Qiqiong Li, Xinyang Chen, Junhua Xie, Shaoping Nie
{"title":"Engineered Bacterial Extracellular Vesicles: Developments, Challenges, and Opportunities","authors":"Qiqiong Li, Xinyang Chen, Junhua Xie, Shaoping Nie","doi":"10.1016/j.eng.2025.06.042","DOIUrl":null,"url":null,"abstract":"The abundant microbe-associated molecular patterns (MAMPs) and nanoscale structures of bacterial extracellular vesicles (bEVs) collectively facilitate their versatile biological activities. Building on these inherent properties, engineering methods encompassing physical, chemical, and genetic modifications have been strategically employed to enhance the functional diversity of bEVs. Therefore, bEVs are being explored as innovative and promising platforms for developing immunotherapeutic strategies targeting diverse pathological states. To establish a foundational understanding of bEVs, we first summarized their biogenesis, classification, structures and biomolecular constituents of bEVs. This review discusses techniques for bEV production and modification and explores the immunological characteristics and effects of engineered bEVs, along with their biomedical applications. Special attention is devoted to advanced engineering approaches and outlining the challenges and emerging avenues in the development of engineered bEVs. This review aims to systematically construct an evidence-based and comprehensive framework that promotes translational optimization and clinical implementation of engineered bEVs, thereby maximizing their application potential in the biomedical field.","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"52 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.eng.2025.06.042","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The abundant microbe-associated molecular patterns (MAMPs) and nanoscale structures of bacterial extracellular vesicles (bEVs) collectively facilitate their versatile biological activities. Building on these inherent properties, engineering methods encompassing physical, chemical, and genetic modifications have been strategically employed to enhance the functional diversity of bEVs. Therefore, bEVs are being explored as innovative and promising platforms for developing immunotherapeutic strategies targeting diverse pathological states. To establish a foundational understanding of bEVs, we first summarized their biogenesis, classification, structures and biomolecular constituents of bEVs. This review discusses techniques for bEV production and modification and explores the immunological characteristics and effects of engineered bEVs, along with their biomedical applications. Special attention is devoted to advanced engineering approaches and outlining the challenges and emerging avenues in the development of engineered bEVs. This review aims to systematically construct an evidence-based and comprehensive framework that promotes translational optimization and clinical implementation of engineered bEVs, thereby maximizing their application potential in the biomedical field.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.