Saeed Shirazian, Hashem O. Alsaab, Masoud Habibi Zare, Qingxia Yang
{"title":"Enhancing polysulfone membranes with UiO-66-NH2@TiO2 for humic acid removal in a PMR under visible light","authors":"Saeed Shirazian, Hashem O. Alsaab, Masoud Habibi Zare, Qingxia Yang","doi":"10.1038/s41545-025-00498-8","DOIUrl":null,"url":null,"abstract":"<p>In this study, the composite photocatalyst UiO-66-NH₂@TiO₂ and a polysulfone membrane modified with it were evaluated for removing humic acid (HA) under visible light in a photocatalytic membrane reactor (PMR). The photocatalyst and membrane were analyzed using FTIR, XRD, FESEM, PL, DRS, AFM, BET, contact angle, and porosity tests to assess pollutant removal, water flux, and membrane resistance. Synthesis was confirmed by FTIR and XRD, while DRS showed a 2.87 eV bandgap, indicating visible light activity. PL results revealed reduced electron-hole recombination. FTIR and SEM confirmed photocatalyst presence and uniform dispersion in the membrane, improving hydrophilicity by decreasing the contact angle by 8°. In suspension, the photocatalyst removed 93% of HA under visible light. Among modified membranes, PS-UNT6% performed best, showing a 26% increase in pure water flux and 12% higher HA removal (total 95.2%) compared to the unmodified membrane. Fouling was significantly reduced, with only a 14% flux drop after 12 h under light, versus 19% without modification. Pore-blocking resistance decreased by over 98%, along with reductions in intrinsic, fouling, and cake resistances, demonstrating enhanced membrane performance through photocatalytic modification.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"110 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00498-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the composite photocatalyst UiO-66-NH₂@TiO₂ and a polysulfone membrane modified with it were evaluated for removing humic acid (HA) under visible light in a photocatalytic membrane reactor (PMR). The photocatalyst and membrane were analyzed using FTIR, XRD, FESEM, PL, DRS, AFM, BET, contact angle, and porosity tests to assess pollutant removal, water flux, and membrane resistance. Synthesis was confirmed by FTIR and XRD, while DRS showed a 2.87 eV bandgap, indicating visible light activity. PL results revealed reduced electron-hole recombination. FTIR and SEM confirmed photocatalyst presence and uniform dispersion in the membrane, improving hydrophilicity by decreasing the contact angle by 8°. In suspension, the photocatalyst removed 93% of HA under visible light. Among modified membranes, PS-UNT6% performed best, showing a 26% increase in pure water flux and 12% higher HA removal (total 95.2%) compared to the unmodified membrane. Fouling was significantly reduced, with only a 14% flux drop after 12 h under light, versus 19% without modification. Pore-blocking resistance decreased by over 98%, along with reductions in intrinsic, fouling, and cake resistances, demonstrating enhanced membrane performance through photocatalytic modification.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.