Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks

IF 23.4 Q1 OPTICS
Minjoo Kim, Yelim Kim, Won Il Park
{"title":"Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks","authors":"Minjoo Kim, Yelim Kim, Won Il Park","doi":"10.1038/s41377-025-01904-z","DOIUrl":null,"url":null,"abstract":"<p>This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"14 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01904-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.

Abstract Image

图像处理与光学矩阵矢量乘法器实现的编码和解码任务
本研究介绍了一种基于光学神经网络(ONN)的自动编码器,用于有效的图像处理,利用专门的光学矩阵矢量乘法器进行编码和解码任务。为了解决高效解码的挑战,我们提出了一种通过标量乘法优化输出处理的方法,提高了生成高维输出的性能。通过采用系统上的迭代调谐,我们减轻了硬件缺陷和噪声,逐步提高图像重建精度到接近数字质量。此外,我们的方法支持降噪和光学图像生成,支持去噪自编码器、变分自编码器和生成对抗网络等模型。我们的研究结果表明,基于onn的系统有潜力超越传统电子系统的能源效率,在医疗成像、自动驾驶汽车和边缘计算等应用中实现实时、低功耗的图像处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信