A deep learning model for classifying left ventricular enlargement for both transthoracic echocardiograms and handheld cardiac ultrasound.

European heart journal. Imaging methods and practice Pub Date : 2025-05-09 eCollection Date: 2024-08-01 DOI:10.1093/ehjimp/qyaf049
Jeffrey G Malins, D M Anisuzzaman, John I Jackson, Eunjung Lee, Jwan A Naser, Jared G Bird, Paul A Friedman, Christie C Ngo, Jae K Oh, Gal Tsaban, Patricia A Pellikka, Jeremy J Thaden, Francisco Lopez-Jimenez, Zachi I Attia, Sorin V Pislaru, Garvan C Kane
{"title":"A deep learning model for classifying left ventricular enlargement for both transthoracic echocardiograms and handheld cardiac ultrasound.","authors":"Jeffrey G Malins, D M Anisuzzaman, John I Jackson, Eunjung Lee, Jwan A Naser, Jared G Bird, Paul A Friedman, Christie C Ngo, Jae K Oh, Gal Tsaban, Patricia A Pellikka, Jeremy J Thaden, Francisco Lopez-Jimenez, Zachi I Attia, Sorin V Pislaru, Garvan C Kane","doi":"10.1093/ehjimp/qyaf049","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To develop a deep learning model that: (i) utilizes transthoracic echocardiography (TTE) clips to detect left ventricular (LV) enlargement without being provided information regarding a patient's sex and body size; and (ii) can be accurately applied to clips acquired using either standard comprehensive TTE or handheld cardiac ultrasound (HCU).</p><p><strong>Methods and results: </strong>Using retrospective TTE data (training: 8722 patients; internal validation: 468 patients), we developed a deep learning model that estimates a patient's end-diastolic LV volume (indexed to body surface area and normalized across the sexes), and then thresholds this estimate to perform the following classifications: (1) normally sized LV vs. ≥ mild LV enlargement; (2) normal/mildly enlarged LV vs. ≥ moderate LV enlargement. For retrospective datasets, the model showed strong performance in TTE across three geographically distinct locations (Minnesota and Wisconsin: 1082 patients, AUC = 0.925 and 0.953 for classifications 1 and 2, respectively; Arizona: 1475 patients, AUC = 0.935 and 0.969; and Florida: 1481 patients, AUC = 0.934 and 0.970). Additionally, performance was strong for both TTE and HCU clips collected from a prospective cohort of 410 patients who underwent HCU immediately following TTE (TTE: AUC = 0.925 and 0.971; HCU: AUC = 0.874 and 0.902, for classifications 1 and 2, respectively).</p><p><strong>Conclusion: </strong>An automated deep learning model applied to TTE or HCU images accurately categorizes LV volumes. These results lay a foundation for future work aimed at optimizing clinical outcomes for heart failure patients by enabling early detection of LV enlargement across various point-of-care settings.</p>","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":"3 3","pages":"qyaf049"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyaf049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: To develop a deep learning model that: (i) utilizes transthoracic echocardiography (TTE) clips to detect left ventricular (LV) enlargement without being provided information regarding a patient's sex and body size; and (ii) can be accurately applied to clips acquired using either standard comprehensive TTE or handheld cardiac ultrasound (HCU).

Methods and results: Using retrospective TTE data (training: 8722 patients; internal validation: 468 patients), we developed a deep learning model that estimates a patient's end-diastolic LV volume (indexed to body surface area and normalized across the sexes), and then thresholds this estimate to perform the following classifications: (1) normally sized LV vs. ≥ mild LV enlargement; (2) normal/mildly enlarged LV vs. ≥ moderate LV enlargement. For retrospective datasets, the model showed strong performance in TTE across three geographically distinct locations (Minnesota and Wisconsin: 1082 patients, AUC = 0.925 and 0.953 for classifications 1 and 2, respectively; Arizona: 1475 patients, AUC = 0.935 and 0.969; and Florida: 1481 patients, AUC = 0.934 and 0.970). Additionally, performance was strong for both TTE and HCU clips collected from a prospective cohort of 410 patients who underwent HCU immediately following TTE (TTE: AUC = 0.925 and 0.971; HCU: AUC = 0.874 and 0.902, for classifications 1 and 2, respectively).

Conclusion: An automated deep learning model applied to TTE or HCU images accurately categorizes LV volumes. These results lay a foundation for future work aimed at optimizing clinical outcomes for heart failure patients by enabling early detection of LV enlargement across various point-of-care settings.

Abstract Image

Abstract Image

Abstract Image

用于经胸超声心动图和手持式心脏超声左心室增大分类的深度学习模型。
目的:开发一种深度学习模型:(i)在不提供患者性别和体型信息的情况下,利用经胸超声心动图(TTE)片段检测左心室(LV)增大;(ii)可以准确地应用于使用标准综合TTE或手持式心脏超声(HCU)获得的夹子。方法和结果:使用回顾性TTE数据(训练:8722例患者;内部验证:468例患者),我们开发了一个深度学习模型来估计患者舒张末期左室容积(以体表面积为索引,跨性别归一化),然后将该估计阈值用于执行以下分类:(1)正常大小的左室vs.≥轻度左室增大;(2)左室正常/轻度增大vs.左室≥中度增大。对于回顾性数据集,该模型在三个不同地理位置的TTE中表现出色(明尼苏达州和威斯康星州:1082例患者,分类1和2的AUC分别= 0.925和0.953;亚利桑那州:1475例,AUC = 0.935和0.969;佛罗里达州1481例,AUC分别为0.934和0.970)。此外,从410名在TTE后立即接受HCU的患者的前瞻性队列中收集的TTE和HCU剪辑的表现都很好(TTE: AUC = 0.925和0.971;HCU: AUC分别为0.874和0.902)。结论:应用于TTE或HCU图像的自动深度学习模型可以准确地对LV体积进行分类。这些结果为未来的工作奠定了基础,旨在通过早期检测各种护理点的左室扩大来优化心力衰竭患者的临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信