SSP-CG scaffolds: a synergistic approach to enhance wound healing and tissue repair.

Tasaduq Manzoor, Lateef Ahmad Dar, Yaawar Bashir Mir, Showkat Ahmad Shah, Sheikh F Ahmad, Meena Godha, Syed Mudasir Ahmad
{"title":"SSP-CG scaffolds: a synergistic approach to enhance wound healing and tissue repair.","authors":"Tasaduq Manzoor, Lateef Ahmad Dar, Yaawar Bashir Mir, Showkat Ahmad Shah, Sheikh F Ahmad, Meena Godha, Syed Mudasir Ahmad","doi":"10.1039/d5tb00598a","DOIUrl":null,"url":null,"abstract":"<p><p>The development of advanced biomaterials with multifunctional properties is essential to address the complex challenges of impaired wound healing and tissue regeneration. This study introduces a novel composite scaffold (SSP-CG), in which silk sericin (SS) and polyvinyl alcohol (PVA) form the SSP component, while copper nanoparticles (CuNPs) and gallic acid (GA) constitute the CG component. SS provides biocompatibility and biodegradability, while PVA enhances structural integrity. CuNPs and GA impart antimicrobial and antioxidant activity, respectively, making the scaffold highly suitable for biomedical applications. The scaffold features an optimal pore size (96 ± 19 μm) and pore volume, promoting cell infiltration and nutrient diffusion. <i>In vitro</i> degradation studies revealed a controlled, sustained profile over 6 weeks, ideal for long-term therapeutic use. A gradual and prolonged release of GA ensured continuous antioxidant activity, confirmed by a DPPH assay showing significant free radical scavenging activity (40.5 ± 2.1%). <i>In vitro</i> studies further confirmed excellent biocompatibility, with optimal cell adhesion, proliferation, and viability while maintaining the environment for tissue regeneration. <i>In vivo</i> studies demonstrated superior wound healing outcomes for the SSP-CG scaffold compared to both positive and negative controls, with histological analysis further confirming enhanced tissue regeneration and reduced inflammation. This first-of-its-kind integration of SS, PVA, CuNPs, and GA highlights the synergistic benefits of these components, offering a promising solution for advanced wound healing and tissue regeneration. These findings suggest that SSP-CG scaffolds could contribute to next-generation biomaterials tailored for chronic wound management and regenerative therapies.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00598a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of advanced biomaterials with multifunctional properties is essential to address the complex challenges of impaired wound healing and tissue regeneration. This study introduces a novel composite scaffold (SSP-CG), in which silk sericin (SS) and polyvinyl alcohol (PVA) form the SSP component, while copper nanoparticles (CuNPs) and gallic acid (GA) constitute the CG component. SS provides biocompatibility and biodegradability, while PVA enhances structural integrity. CuNPs and GA impart antimicrobial and antioxidant activity, respectively, making the scaffold highly suitable for biomedical applications. The scaffold features an optimal pore size (96 ± 19 μm) and pore volume, promoting cell infiltration and nutrient diffusion. In vitro degradation studies revealed a controlled, sustained profile over 6 weeks, ideal for long-term therapeutic use. A gradual and prolonged release of GA ensured continuous antioxidant activity, confirmed by a DPPH assay showing significant free radical scavenging activity (40.5 ± 2.1%). In vitro studies further confirmed excellent biocompatibility, with optimal cell adhesion, proliferation, and viability while maintaining the environment for tissue regeneration. In vivo studies demonstrated superior wound healing outcomes for the SSP-CG scaffold compared to both positive and negative controls, with histological analysis further confirming enhanced tissue regeneration and reduced inflammation. This first-of-its-kind integration of SS, PVA, CuNPs, and GA highlights the synergistic benefits of these components, offering a promising solution for advanced wound healing and tissue regeneration. These findings suggest that SSP-CG scaffolds could contribute to next-generation biomaterials tailored for chronic wound management and regenerative therapies.

SSP-CG支架:一种促进伤口愈合和组织修复的协同方法。
开发具有多功能特性的先进生物材料对于解决受损伤口愈合和组织再生的复杂挑战至关重要。本研究介绍了一种新型复合支架(SSP-CG),其中丝胶蛋白(SS)和聚乙烯醇(PVA)构成SSP组分,铜纳米粒子(CuNPs)和没食子酸(GA)构成CG组分。SS提供生物相容性和生物降解性,而PVA增强结构完整性。CuNPs和GA分别具有抗菌和抗氧化活性,使支架非常适合生物医学应用。该支架具有最佳孔径(96±19 μm)和孔体积,促进细胞浸润和营养物质扩散。体外降解研究显示,在6周以上的控制,持续的概况,理想的长期治疗使用。GA的逐渐和延长的释放确保了持续的抗氧化活性,DPPH实验证实了它具有显著的自由基清除活性(40.5±2.1%)。体外研究进一步证实了其良好的生物相容性,具有最佳的细胞粘附、增殖和活力,同时保持了组织再生的环境。体内研究表明,与阴性对照和阳性对照相比,SSP-CG支架的伤口愈合效果更好,组织学分析进一步证实了组织再生增强和炎症减少。这是首次将SS、PVA、CuNPs和GA整合在一起,突出了这些成分的协同效益,为先进的伤口愈合和组织再生提供了有希望的解决方案。这些发现表明,SSP-CG支架可能有助于为慢性伤口管理和再生治疗量身定制下一代生物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信