Tasaduq Manzoor, Lateef Ahmad Dar, Yaawar Bashir Mir, Showkat Ahmad Shah, Sheikh F Ahmad, Meena Godha, Syed Mudasir Ahmad
{"title":"SSP-CG scaffolds: a synergistic approach to enhance wound healing and tissue repair.","authors":"Tasaduq Manzoor, Lateef Ahmad Dar, Yaawar Bashir Mir, Showkat Ahmad Shah, Sheikh F Ahmad, Meena Godha, Syed Mudasir Ahmad","doi":"10.1039/d5tb00598a","DOIUrl":null,"url":null,"abstract":"<p><p>The development of advanced biomaterials with multifunctional properties is essential to address the complex challenges of impaired wound healing and tissue regeneration. This study introduces a novel composite scaffold (SSP-CG), in which silk sericin (SS) and polyvinyl alcohol (PVA) form the SSP component, while copper nanoparticles (CuNPs) and gallic acid (GA) constitute the CG component. SS provides biocompatibility and biodegradability, while PVA enhances structural integrity. CuNPs and GA impart antimicrobial and antioxidant activity, respectively, making the scaffold highly suitable for biomedical applications. The scaffold features an optimal pore size (96 ± 19 μm) and pore volume, promoting cell infiltration and nutrient diffusion. <i>In vitro</i> degradation studies revealed a controlled, sustained profile over 6 weeks, ideal for long-term therapeutic use. A gradual and prolonged release of GA ensured continuous antioxidant activity, confirmed by a DPPH assay showing significant free radical scavenging activity (40.5 ± 2.1%). <i>In vitro</i> studies further confirmed excellent biocompatibility, with optimal cell adhesion, proliferation, and viability while maintaining the environment for tissue regeneration. <i>In vivo</i> studies demonstrated superior wound healing outcomes for the SSP-CG scaffold compared to both positive and negative controls, with histological analysis further confirming enhanced tissue regeneration and reduced inflammation. This first-of-its-kind integration of SS, PVA, CuNPs, and GA highlights the synergistic benefits of these components, offering a promising solution for advanced wound healing and tissue regeneration. These findings suggest that SSP-CG scaffolds could contribute to next-generation biomaterials tailored for chronic wound management and regenerative therapies.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00598a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of advanced biomaterials with multifunctional properties is essential to address the complex challenges of impaired wound healing and tissue regeneration. This study introduces a novel composite scaffold (SSP-CG), in which silk sericin (SS) and polyvinyl alcohol (PVA) form the SSP component, while copper nanoparticles (CuNPs) and gallic acid (GA) constitute the CG component. SS provides biocompatibility and biodegradability, while PVA enhances structural integrity. CuNPs and GA impart antimicrobial and antioxidant activity, respectively, making the scaffold highly suitable for biomedical applications. The scaffold features an optimal pore size (96 ± 19 μm) and pore volume, promoting cell infiltration and nutrient diffusion. In vitro degradation studies revealed a controlled, sustained profile over 6 weeks, ideal for long-term therapeutic use. A gradual and prolonged release of GA ensured continuous antioxidant activity, confirmed by a DPPH assay showing significant free radical scavenging activity (40.5 ± 2.1%). In vitro studies further confirmed excellent biocompatibility, with optimal cell adhesion, proliferation, and viability while maintaining the environment for tissue regeneration. In vivo studies demonstrated superior wound healing outcomes for the SSP-CG scaffold compared to both positive and negative controls, with histological analysis further confirming enhanced tissue regeneration and reduced inflammation. This first-of-its-kind integration of SS, PVA, CuNPs, and GA highlights the synergistic benefits of these components, offering a promising solution for advanced wound healing and tissue regeneration. These findings suggest that SSP-CG scaffolds could contribute to next-generation biomaterials tailored for chronic wound management and regenerative therapies.