Qing-Yu Chen, Ming-Ming Shao, Shu-Feng Dong, Huan-Zhong Shi, Feng-Shuang Yi
{"title":"Metagenomic and Metabolomic Profiling Reveals the Impact of High-Fat Diet on Malignant Pleural Effusion.","authors":"Qing-Yu Chen, Ming-Ming Shao, Shu-Feng Dong, Huan-Zhong Shi, Feng-Shuang Yi","doi":"10.1111/1759-7714.70126","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Malignant pleural effusion (MPE) is a common complication in the advanced stage of cancer. High-Fat Diet (HFD)-induced obesity has become a common metabolic background in cancer patients. Recent studies have demonstrated that HFD induces gut dysbiosis, resulting in alterations in metabolites and immune responses. However, its role in MPE remains unclear.</p><p><strong>Methods: </strong>We established an MPE mouse model under both normal chow and HFD conditions. Metagenomic sequencing of fecal samples and untargeted metabolomics of plasma were performed to assess alterations in gut microbiota and systemic metabolites, respectively. Bioinformatic and statistical analyses were conducted to identify significant microbial taxa and metabolic pathways.</p><p><strong>Results: </strong>HFD-fed mice exhibited increased pleural effusion. Metagenome data of the intestinal microbiome and metabolome profiles of plasma metabolites revealed key taxa-Akkermansiaceae, Parabacteroides, and Muribaculaceae-as well as significant metabolic pathways involved in sphingolipid metabolism, glycerophospholipid metabolism, and steroid hormone biosynthesis.</p><p><strong>Conclusion: </strong>These findings suggest that HFD may accelerate the MPE progression through modulation of gut microbiota and plasma metabolites, providing new strategies for prevention and treatment.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":"16 14","pages":"e70126"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.70126","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Malignant pleural effusion (MPE) is a common complication in the advanced stage of cancer. High-Fat Diet (HFD)-induced obesity has become a common metabolic background in cancer patients. Recent studies have demonstrated that HFD induces gut dysbiosis, resulting in alterations in metabolites and immune responses. However, its role in MPE remains unclear.
Methods: We established an MPE mouse model under both normal chow and HFD conditions. Metagenomic sequencing of fecal samples and untargeted metabolomics of plasma were performed to assess alterations in gut microbiota and systemic metabolites, respectively. Bioinformatic and statistical analyses were conducted to identify significant microbial taxa and metabolic pathways.
Results: HFD-fed mice exhibited increased pleural effusion. Metagenome data of the intestinal microbiome and metabolome profiles of plasma metabolites revealed key taxa-Akkermansiaceae, Parabacteroides, and Muribaculaceae-as well as significant metabolic pathways involved in sphingolipid metabolism, glycerophospholipid metabolism, and steroid hormone biosynthesis.
Conclusion: These findings suggest that HFD may accelerate the MPE progression through modulation of gut microbiota and plasma metabolites, providing new strategies for prevention and treatment.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.