Controlling plant pests with lasers.

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Precision Agriculture Pub Date : 2025-01-01 Epub Date: 2025-07-18 DOI:10.1007/s11119-025-10266-w
Christian Andreasen
{"title":"Controlling plant pests with lasers.","authors":"Christian Andreasen","doi":"10.1007/s11119-025-10266-w","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing problems with pesticide resistance and the adverse environmental side effects of pesticide use have increased the demand for developing alternative methods to control pests. Site-specific pest management can reduce the negative impact of pest management in horticulture and agriculture. In recent years, there has been an increasing focus on using laser beams to control pests by directing the laser beam toward the pest and killing or damaging it with heat. Lasers are energy demanding, and therefore, the laser beam should only be directed towards the pest and not irradiate the whole infested area. Precise location and identification of the pests can be done with artificial intelligence, and mirrors can direct the laser toward the target point of the pest. Using a laser beam with a diameter of 2 mm to control fifteen pests will only expose less than 0.02% of the area to the treatment. Therefore, laser is the most site-specific pest management method achievable. This article discusses the development of controlling pests with lasers and the advantages and disadvantages.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"26 4","pages":"69"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10266-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing problems with pesticide resistance and the adverse environmental side effects of pesticide use have increased the demand for developing alternative methods to control pests. Site-specific pest management can reduce the negative impact of pest management in horticulture and agriculture. In recent years, there has been an increasing focus on using laser beams to control pests by directing the laser beam toward the pest and killing or damaging it with heat. Lasers are energy demanding, and therefore, the laser beam should only be directed towards the pest and not irradiate the whole infested area. Precise location and identification of the pests can be done with artificial intelligence, and mirrors can direct the laser toward the target point of the pest. Using a laser beam with a diameter of 2 mm to control fifteen pests will only expose less than 0.02% of the area to the treatment. Therefore, laser is the most site-specific pest management method achievable. This article discusses the development of controlling pests with lasers and the advantages and disadvantages.

用激光控制植物害虫。
农药耐药性问题日益严重,农药使用对环境的副作用也越来越严重,这就增加了开发替代方法来控制害虫的需求。针对特定地点的有害生物管理可以减少有害生物管理对园艺和农业的负面影响。近年来,人们越来越关注使用激光束来控制害虫,通过将激光束指向害虫并用热杀死或破坏害虫。激光需要能量,因此,激光束应该只指向害虫,而不是照射整个感染区域。通过人工智能可以精确定位和识别害虫,镜子可以将激光指向害虫的目标点。使用直径2毫米的激光束来控制15只害虫,只会使不到0.02%的区域暴露在治疗中。因此,激光是可实现的最具现场特异性的害虫管理方法。本文论述了激光防治害虫的研究进展及其优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信