Regulatory roles of rs2192932 and rs10487150 in autism spectrum disorder: insights from fine-mapping and cross-population validation.

IF 3.2 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shuai Zhao, Haoxue Wang, Fang Hou, Yanlin Chen, Kaiheng Zhu, Rundong Liu, Zhen Xiang, Jiao Zhang, Xi Liang, Li Li, Ranran Song
{"title":"Regulatory roles of rs2192932 and rs10487150 in autism spectrum disorder: insights from fine-mapping and cross-population validation.","authors":"Shuai Zhao, Haoxue Wang, Fang Hou, Yanlin Chen, Kaiheng Zhu, Rundong Liu, Zhen Xiang, Jiao Zhang, Xi Liang, Li Li, Ranran Song","doi":"10.1093/hmg/ddaf107","DOIUrl":null,"url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with increasing global prevalence. GWAS have identified many ASD risk loci, but most are in non-coding regions, and the genetic value of nearby loci remains underexplored. We aim to conduct a fine-mapping analysis of ASD-associated SNPs and validate the signals across ethnic groups, focusing on their regulatory effects on gene expression. Variants within ±500 kb of known ASD loci were selected. Functional annotations were performed using RegulomeDB and CADD. ASD susceptibility genes were obtained from AutDB and SFARI, and screened for validation using 11 high-quality GEO datasets. eQTL analysis was conducted using GTEx database. For Chinese children, a case-control study design was adopted. Biological samples and demographic information were collected from 1244 children between 2010-2024. Extracted DNA was used for ASAMD chip. For European children, GWAS data from 46351 samples were obtained from iPSYCH-PGC-ASD project. 158 ASD susceptibility SNPs with cis-eQTL signals in brain tissue were identified. Notably, rs2192932 and rs10487150 showed consistent associations with ASD in both populations. In additive model, a G to A change at rs2192932 increased ASD risk by 29.5% (OR = 1.295, 95% CI: 1.046-1.605, P = 0.018), while an A to C change at rs10487150 increased risk by 22.7% (OR = 1.227, 95% CI: 1.008-1.495, P = 0.042). Additionally, rs2192932 and rs10487150 may influence ASD onset by regulating SERPINE1 expression. These findings offer new insights into the molecular genetics of ASD and support the potential of genetic markers for risk prediction and early screening.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf107","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with increasing global prevalence. GWAS have identified many ASD risk loci, but most are in non-coding regions, and the genetic value of nearby loci remains underexplored. We aim to conduct a fine-mapping analysis of ASD-associated SNPs and validate the signals across ethnic groups, focusing on their regulatory effects on gene expression. Variants within ±500 kb of known ASD loci were selected. Functional annotations were performed using RegulomeDB and CADD. ASD susceptibility genes were obtained from AutDB and SFARI, and screened for validation using 11 high-quality GEO datasets. eQTL analysis was conducted using GTEx database. For Chinese children, a case-control study design was adopted. Biological samples and demographic information were collected from 1244 children between 2010-2024. Extracted DNA was used for ASAMD chip. For European children, GWAS data from 46351 samples were obtained from iPSYCH-PGC-ASD project. 158 ASD susceptibility SNPs with cis-eQTL signals in brain tissue were identified. Notably, rs2192932 and rs10487150 showed consistent associations with ASD in both populations. In additive model, a G to A change at rs2192932 increased ASD risk by 29.5% (OR = 1.295, 95% CI: 1.046-1.605, P = 0.018), while an A to C change at rs10487150 increased risk by 22.7% (OR = 1.227, 95% CI: 1.008-1.495, P = 0.042). Additionally, rs2192932 and rs10487150 may influence ASD onset by regulating SERPINE1 expression. These findings offer new insights into the molecular genetics of ASD and support the potential of genetic markers for risk prediction and early screening.

rs2192932和rs10487150在自闭症谱系障碍中的调控作用:来自精细定位和跨群体验证的见解
自闭症谱系障碍(ASD)是一种复杂的神经发育障碍,全球患病率越来越高。GWAS已经确定了许多ASD风险位点,但大多数位点位于非编码区,附近位点的遗传价值仍未得到充分探索。我们的目标是对asd相关snp进行精细定位分析,并验证跨种族的信号,重点研究它们对基因表达的调控作用。选择已知ASD位点±500kb内的变异。使用RegulomeDB和CADD进行功能注释。从AutDB和SFARI中获得ASD易感基因,并使用11个高质量的GEO数据集进行筛选验证。采用GTEx数据库进行eQTL分析。对中国儿童采用病例对照研究设计。在2010-2024年间收集了1244名儿童的生物样本和人口统计信息。提取的DNA用于ASAMD芯片。对于欧洲儿童,来自iPSYCH-PGC-ASD项目的46351份样本的GWAS数据。在脑组织中鉴定出158个具有顺式- eqtl信号的ASD易感性snp。值得注意的是,rs2192932和rs10487150在两个人群中显示出与ASD的一致关联。在加性模型中,G到a在rs2192932的变化使ASD风险增加29.5% (OR = 1.295, 95% CI: 1.046-1.605, P = 0.018),而a到C在rs10487150的变化使ASD风险增加22.7% (OR = 1.227, 95% CI: 1.008-1.495, P = 0.042)。此外,rs2192932和rs10487150可能通过调节SERPINE1的表达影响ASD的发病。这些发现为ASD的分子遗传学提供了新的见解,并支持遗传标记在风险预测和早期筛查方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信