Ziqing Wei, Chunhui Guo, Hang Zhou, Yanling Wu, Xudong Zhou, Jibing Chen, Fujun Li
{"title":"Exosome-mediated miRNA delivery: a molecular switch for reshaping neuropathic pain therapy.","authors":"Ziqing Wei, Chunhui Guo, Hang Zhou, Yanling Wu, Xudong Zhou, Jibing Chen, Fujun Li","doi":"10.3389/fnmol.2025.1625943","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain (NP) is a chronic condition caused by nerve injury or disease. It remains a therapeutic challenge because conventional drugs have limited efficacy and cause adverse effects. Exosomes, with the ability to cross the blood-brain barrier, low immunogenicity, and tissue-homing capacity, have emerged as promising nanovehicles for precise microRNA (miRNA) delivery to modulate key NP pathologies such as neuroinflammation, neuronal hyperexcitability, mechanical allodynia, and thermal hyperalgesia. In this review, we highlight recent advances in exosome-mediated miRNA therapy for NP. We also elucidate the molecular mechanisms and unique advantages of exosomes as both delivery platforms and intrinsic therapeutic agents. We synthesize evidence from preclinical models and initial clinical-stage studies, addressing translational challenges in scalable production and targeted delivery. Through sustained innovation and multidisciplinary collaboration, exosome-based miRNA delivery systems demonstrate transformative potential to overcome current therapeutic limitations, enabling novel NP management strategies.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"18 ","pages":"1625943"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271170/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2025.1625943","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neuropathic pain (NP) is a chronic condition caused by nerve injury or disease. It remains a therapeutic challenge because conventional drugs have limited efficacy and cause adverse effects. Exosomes, with the ability to cross the blood-brain barrier, low immunogenicity, and tissue-homing capacity, have emerged as promising nanovehicles for precise microRNA (miRNA) delivery to modulate key NP pathologies such as neuroinflammation, neuronal hyperexcitability, mechanical allodynia, and thermal hyperalgesia. In this review, we highlight recent advances in exosome-mediated miRNA therapy for NP. We also elucidate the molecular mechanisms and unique advantages of exosomes as both delivery platforms and intrinsic therapeutic agents. We synthesize evidence from preclinical models and initial clinical-stage studies, addressing translational challenges in scalable production and targeted delivery. Through sustained innovation and multidisciplinary collaboration, exosome-based miRNA delivery systems demonstrate transformative potential to overcome current therapeutic limitations, enabling novel NP management strategies.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.