Markus Reuter, Juan P D'Olivo, Thomas C Brachert, Philipp M Spreter, Regina Mertz-Kraus, Claudia Wrozyna
{"title":"Mid-Miocene warmth pushed fossil coral calcification to physiological limits in high-latitude reefs.","authors":"Markus Reuter, Juan P D'Olivo, Thomas C Brachert, Philipp M Spreter, Regina Mertz-Kraus, Claudia Wrozyna","doi":"10.1038/s43247-025-02559-9","DOIUrl":null,"url":null,"abstract":"<p><p>The history of resilience of organisms over geologic timescales serves as a reference for predicting their response to future conditions. Here we use fossil <i>Porites</i> coral records of skeletal growth and environmental variability from the subtropical Central Paratethys Sea to assess coral resilience to past ocean warming and acidification. These records offer a unique perspective on the calcification performance and environmental tolerances of a major present-day reef builder during the globally warm mid-Miocene CO<sub>2</sub> maximum and subsequent climate transition (16 to 13 Ma). We found evidence for up-regulation of the pH and saturation state of the corals' calcifying fluid as a mechanism underlying past resilience. However, this physiological control on the internal carbonate chemistry was insufficient to counteract the sub-optimal environment, resulting in an extremely low calcification rate that likely affected reef framework accretion. Our findings emphasize the influence of latitudinal seasonality on the sensitivity of coral calcification to climate change.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"569"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274133/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02559-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The history of resilience of organisms over geologic timescales serves as a reference for predicting their response to future conditions. Here we use fossil Porites coral records of skeletal growth and environmental variability from the subtropical Central Paratethys Sea to assess coral resilience to past ocean warming and acidification. These records offer a unique perspective on the calcification performance and environmental tolerances of a major present-day reef builder during the globally warm mid-Miocene CO2 maximum and subsequent climate transition (16 to 13 Ma). We found evidence for up-regulation of the pH and saturation state of the corals' calcifying fluid as a mechanism underlying past resilience. However, this physiological control on the internal carbonate chemistry was insufficient to counteract the sub-optimal environment, resulting in an extremely low calcification rate that likely affected reef framework accretion. Our findings emphasize the influence of latitudinal seasonality on the sensitivity of coral calcification to climate change.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.