The Sabatier principle governs the performance of self-sufficient heterogeneous biocatalysts for redox biotransformations.

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eleftheria Diamanti, Ainhoa Oliden-Sánchez, Daniel Grajales-Hernández, Daniel Andrés-Sanz, Rut Fernández-Marín, Daniel Padro, Jesús Ruíz-Cabello, Ronen Zangi, Fernando López-Gallego
{"title":"The Sabatier principle governs the performance of self-sufficient heterogeneous biocatalysts for redox biotransformations.","authors":"Eleftheria Diamanti, Ainhoa Oliden-Sánchez, Daniel Grajales-Hernández, Daniel Andrés-Sanz, Rut Fernández-Marín, Daniel Padro, Jesús Ruíz-Cabello, Ronen Zangi, Fernando López-Gallego","doi":"10.1016/j.xcrp.2025.102694","DOIUrl":null,"url":null,"abstract":"<p><p>Self-sufficient heterogeneous biocatalysts (ssHBs), in which enzymes and cofactors are coimmobilized on the same support, provide <i>in situ</i> cofactor regeneration and reduce operating costs. However, the underlying mechanisms remain poorly understood. Here, we present a theoretical model for ssHBs consisting of NAD(P)H-dependent dehydrogenases immobilized on porous agarose-based materials with cofactors coimmobilized through electrostatic interactions via a cationic polymer coating. This model links enzyme activity to cofactor-polymer binding thermodynamics and demonstrates that ssHBs obey the Sabatier principle, where maximum catalytic efficiency is achieved at an intermediate binding strength. Adjustment of pH and ionic strength modulates this interaction, and the resulting activity exhibits the predicted volcano plot. Depending on the reaction conditions, electrostatic complexation is influenced, resulting in the formation of a dense, liquid-like phase inside the particles. Our study directly confirms the Sabatier principle in ssHBs and highlights the crucial role of cofactor binding thermodynamics in optimizing biocatalysis for chemical applications.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"6 7","pages":"102694"},"PeriodicalIF":7.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2025.102694","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Self-sufficient heterogeneous biocatalysts (ssHBs), in which enzymes and cofactors are coimmobilized on the same support, provide in situ cofactor regeneration and reduce operating costs. However, the underlying mechanisms remain poorly understood. Here, we present a theoretical model for ssHBs consisting of NAD(P)H-dependent dehydrogenases immobilized on porous agarose-based materials with cofactors coimmobilized through electrostatic interactions via a cationic polymer coating. This model links enzyme activity to cofactor-polymer binding thermodynamics and demonstrates that ssHBs obey the Sabatier principle, where maximum catalytic efficiency is achieved at an intermediate binding strength. Adjustment of pH and ionic strength modulates this interaction, and the resulting activity exhibits the predicted volcano plot. Depending on the reaction conditions, electrostatic complexation is influenced, resulting in the formation of a dense, liquid-like phase inside the particles. Our study directly confirms the Sabatier principle in ssHBs and highlights the crucial role of cofactor binding thermodynamics in optimizing biocatalysis for chemical applications.

萨巴蒂尔原理支配着自给自足的多相生物催化剂氧化还原生物转化的性能。
自给自足的多相生物催化剂(ssHBs)将酶和辅助因子共同固定在同一载体上,提供原位辅助因子再生并降低运营成本。然而,潜在的机制仍然知之甚少。在这里,我们提出了一个由NAD(P) h依赖的脱氢酶组成的ssHBs的理论模型,该模型通过阳离子聚合物涂层通过静电相互作用将辅助因子固定在多孔琼脂糖基材料上。该模型将酶活性与辅因子-聚合物结合热力学联系起来,并证明ssHBs遵循萨巴蒂尔原理,即在中等结合强度下达到最大的催化效率。pH值和离子强度的调整调节了这种相互作用,由此产生的活度显示了预测的火山图。根据反应条件的不同,静电络合作用会受到影响,从而导致颗粒内部形成致密的液相。我们的研究直接证实了ssHBs中的Sabatier原理,并强调了辅因子结合热力学在优化化学应用中的生物催化中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信