{"title":"Bioprospecting seaweed derived bio-oil as a marine biofouling mitigating agent.","authors":"Sainath Gopinathan, Srividhya Krishnan, Sowndarya Jothipandiyan, Subramaniyasharma Sivaraman, Lakkakula Satish, Ponnusami Venkatachalam, Saravanan Ramiah Shanmugam, Nithyanand Paramasivam","doi":"10.1080/08927014.2025.2527774","DOIUrl":null,"url":null,"abstract":"<p><p>Mitigating marine biofouling using marine resources has become a research hotspot as it is considered an environmentally friendly approach. Hence, this study investigated the biofilm mitigating property and antifouling activity of bio-oil extracted from the pyrolysis of seaweed biomass. The bio-oil inhibited up to 73-80% of biofilm and extracellular polymeric substance (EPS) formation of the predominant marine microfoulers <i>Nitratireductor kimnyeongensis</i>, <i>Nitratireductor aquibiodomus</i> and <i>Stutzerimonas stutzeri</i>. Gas chromatography-mass spectrometry (GC-MS) analysis of the bio-oil identified that 13-Docosenamide (<i>Z</i>) is a prominent compound that accounts for about 27.42% of the total bio-oil composition which might be responsible for its antibiofilm property. The bio-oil was further formulated into antifouling paint equivalent to the consistency of traditional antifouling paints and coated on titanium plates. The water contact angle results showed that bio-oil and antifouling paint exhibit hydrophilic surfaces, effectively reducing bacterial attachment. Scanning electron microscopic analysis revealed that the anti-fouling paint coated on titanium plates against mixed species of microfoulers significantly reduced biofilms. Molecular docking of 13-Docosenamide (<i>Z</i>) against the mussel adhesive foot protein of <i>Perna viridis</i> (Pvfp-5b) exhibited favorable binding scores, indicating that it may reduce the bio-adhesion of macrofoulers to the substrate.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-16"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2527774","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitigating marine biofouling using marine resources has become a research hotspot as it is considered an environmentally friendly approach. Hence, this study investigated the biofilm mitigating property and antifouling activity of bio-oil extracted from the pyrolysis of seaweed biomass. The bio-oil inhibited up to 73-80% of biofilm and extracellular polymeric substance (EPS) formation of the predominant marine microfoulers Nitratireductor kimnyeongensis, Nitratireductor aquibiodomus and Stutzerimonas stutzeri. Gas chromatography-mass spectrometry (GC-MS) analysis of the bio-oil identified that 13-Docosenamide (Z) is a prominent compound that accounts for about 27.42% of the total bio-oil composition which might be responsible for its antibiofilm property. The bio-oil was further formulated into antifouling paint equivalent to the consistency of traditional antifouling paints and coated on titanium plates. The water contact angle results showed that bio-oil and antifouling paint exhibit hydrophilic surfaces, effectively reducing bacterial attachment. Scanning electron microscopic analysis revealed that the anti-fouling paint coated on titanium plates against mixed species of microfoulers significantly reduced biofilms. Molecular docking of 13-Docosenamide (Z) against the mussel adhesive foot protein of Perna viridis (Pvfp-5b) exhibited favorable binding scores, indicating that it may reduce the bio-adhesion of macrofoulers to the substrate.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.