3-(Aminomethyl)piperidinium Spacer-Induced Dion-Jacobson 2D Perovskite Beneath CsPbI3 for Stable and Efficient Inorganic Perovskite Solar Cells.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-07-21 DOI:10.1002/cssc.202501062
Sohyun Kang, Seungmin Lee, Oui Jin Oh, Dong Hyun Kim, Chan Young Kim, Sung Yong Kim, Hyojin Hong, Jeong Hyeon Park, Jun Hong Noh
{"title":"3-(Aminomethyl)piperidinium Spacer-Induced Dion-Jacobson 2D Perovskite Beneath CsPbI<sub>3</sub> for Stable and Efficient Inorganic Perovskite Solar Cells.","authors":"Sohyun Kang, Seungmin Lee, Oui Jin Oh, Dong Hyun Kim, Chan Young Kim, Sung Yong Kim, Hyojin Hong, Jeong Hyeon Park, Jun Hong Noh","doi":"10.1002/cssc.202501062","DOIUrl":null,"url":null,"abstract":"<p><p>For the inorganic perovskite CsPbI<sub>3</sub>, while many strategies have focused on passivating the top surface, engineering the interface beneath the perovskite layer remains a critical yet underexplored avenue, primarily due to the high crystallization temperature and the dissolution of underlying layers during solution processing. Here, these longstanding challenges are addressed by introducing a strategic placement of a Dion-Jacobson quasi-2D perovskite layer beneath CsPbI<sub>3</sub>. Specifically, 3-(aminomethyl)piperidinium iodide (3AMPI<sub>2</sub>), an organic salt insoluble in the CsPbI<sub>3</sub> precursor solution, is employed to form a robust quasi-2D interlayer without degradation during perovskite deposition and annealing. This bottom-layer integration passivates interfacial defects, promotes favorable crystallization of CsPbI<sub>3</sub>, and results in significantly enhanced device performance, achieving a power conversion efficiency of 20.98%, an open-circuit voltage (V<sub>oc</sub>) of 1.21 V, a short-circuit current density (J<sub>sc</sub>) of 20.59 mAcm<sup>-2</sup>, and a fill factor of 84.21%, along with robust long-term operational stability. The findings demonstrate a targeted interfacial design approach that unlocks new opportunities for simultaneously optimizing efficiency and stability in inorganic perovskite photovoltaics.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2501062"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501062","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For the inorganic perovskite CsPbI3, while many strategies have focused on passivating the top surface, engineering the interface beneath the perovskite layer remains a critical yet underexplored avenue, primarily due to the high crystallization temperature and the dissolution of underlying layers during solution processing. Here, these longstanding challenges are addressed by introducing a strategic placement of a Dion-Jacobson quasi-2D perovskite layer beneath CsPbI3. Specifically, 3-(aminomethyl)piperidinium iodide (3AMPI2), an organic salt insoluble in the CsPbI3 precursor solution, is employed to form a robust quasi-2D interlayer without degradation during perovskite deposition and annealing. This bottom-layer integration passivates interfacial defects, promotes favorable crystallization of CsPbI3, and results in significantly enhanced device performance, achieving a power conversion efficiency of 20.98%, an open-circuit voltage (Voc) of 1.21 V, a short-circuit current density (Jsc) of 20.59 mAcm-2, and a fill factor of 84.21%, along with robust long-term operational stability. The findings demonstrate a targeted interfacial design approach that unlocks new opportunities for simultaneously optimizing efficiency and stability in inorganic perovskite photovoltaics.

CsPbI3下3-(氨基甲基)胡椒啶间隔层诱导Dion-Jacobson 2D钙钛矿制备稳定高效的无机钙钛矿太阳能电池。
对于无机钙钛矿CsPbI3,虽然许多策略都集中在钝化顶部表面,但设计钙钛矿层下的界面仍然是一个关键但尚未开发的途径,主要是由于高结晶温度和溶液处理过程中下伏层的溶解。在这里,通过在CsPbI3下面战略性地放置Dion-Jacobson准二维钙钛矿层来解决这些长期存在的挑战。具体来说,3-(氨基甲基)碘化哌酸盐(3AMPI2)是一种不溶于CsPbI3前驱体溶液的有机盐,在钙钛矿沉积和退火过程中形成坚固的准二维中间层,而不会降解。这种底层集成钝化了界面缺陷,促进了CsPbI3的良好结晶,显著提高了器件性能,功率转换效率达到20.98%,开路电压(Voc)为1.21 V,短路电流密度(Jsc)为20.59 mAcm-2,填充系数为84.21%,并具有良好的长期工作稳定性。研究结果展示了一种有针对性的界面设计方法,为同时优化无机钙钛矿光伏电池的效率和稳定性提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信