Tian-Xiang Zhang, Xiaoxiao Yang, Xue Gao, Xiaoshan Du, Xuegan Lian, Naiyuan Shao, Ye Liu, Zhenning Huang, Dongmei Jia, Alexander Y L Lau, Zhiguo Li, Zaal Kokaia, Fu-Dong Shi, Chao Zhang
{"title":"Type I Interferon Signaling Augments Autoimmunity in Neuromyelitis Optica Spectrum Disorder.","authors":"Tian-Xiang Zhang, Xiaoxiao Yang, Xue Gao, Xiaoshan Du, Xuegan Lian, Naiyuan Shao, Ye Liu, Zhenning Huang, Dongmei Jia, Alexander Y L Lau, Zhiguo Li, Zaal Kokaia, Fu-Dong Shi, Chao Zhang","doi":"10.1002/advs.202500942","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease characterized by anti-aquaporin 4 (AQP4) antibody-mediated astrocyte damage and subsequent demyelination. Prior attempts to treat NMOSD with interferon-beta (IFN-β), a disease-modifying therapy for multiple sclerosis, resulted in worsening of disease activity, with an unknown mechanism. Here, robust activation of the cGAS-STING-IFN-I signaling pathway is identified in myeloid cells in both the periphery and central nervous system. The abnormal IFN-I response gives rise to an increase in the number of AQP4 antigen-specific autoreactive T cells. Sting deficiency can significantly blunt the activation of AQP4-specific T cells, as well as the IFN-I activity in microglia, and attenuate astrocyte damage. Consequently, the clinical manifestation of NMOSD is ameliorated in a passive transfer mouse model of NMOSD. Further, treatment with STING inhibitor H151 alleviates the severity of NMOSD mouse models. These findings uncover the cGAS-STING-IFN-I pathway in promoting autoreactive T cells and establish a foundation for inhibiting this pathway as a new therapeutic revenue for NMOSD.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e00942"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202500942","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease characterized by anti-aquaporin 4 (AQP4) antibody-mediated astrocyte damage and subsequent demyelination. Prior attempts to treat NMOSD with interferon-beta (IFN-β), a disease-modifying therapy for multiple sclerosis, resulted in worsening of disease activity, with an unknown mechanism. Here, robust activation of the cGAS-STING-IFN-I signaling pathway is identified in myeloid cells in both the periphery and central nervous system. The abnormal IFN-I response gives rise to an increase in the number of AQP4 antigen-specific autoreactive T cells. Sting deficiency can significantly blunt the activation of AQP4-specific T cells, as well as the IFN-I activity in microglia, and attenuate astrocyte damage. Consequently, the clinical manifestation of NMOSD is ameliorated in a passive transfer mouse model of NMOSD. Further, treatment with STING inhibitor H151 alleviates the severity of NMOSD mouse models. These findings uncover the cGAS-STING-IFN-I pathway in promoting autoreactive T cells and establish a foundation for inhibiting this pathway as a new therapeutic revenue for NMOSD.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.