Molten-Salt-Mediated Synthesis of Atomic Manganese/Cobalt Catalysts on Bioceramic Microparticles for Catalytic Anti-Osteoarthritis Treatments.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ronghui Deng, Zining Zhang, Aijun Wu, Chaoqin Shu, Shitang Song, Fuzhen Yuan, Zijie Xu, Meng Yang, Jing Ye, Yifan Song, Yufang Zhu, Jia-Kuo Yu
{"title":"Molten-Salt-Mediated Synthesis of Atomic Manganese/Cobalt Catalysts on Bioceramic Microparticles for Catalytic Anti-Osteoarthritis Treatments.","authors":"Ronghui Deng, Zining Zhang, Aijun Wu, Chaoqin Shu, Shitang Song, Fuzhen Yuan, Zijie Xu, Meng Yang, Jing Ye, Yifan Song, Yufang Zhu, Jia-Kuo Yu","doi":"10.1002/advs.202505500","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degeneration and local inflammation, and its progression is closely related to the excessive production of reactive oxygen species (ROS). Despite progress made with small molecule antioxidants and nanozymes, effective antioxidant therapy for the long-term elimination of these ROS remains challenging, largely due to the rapid clearance of antioxidants from the joints via synovial vessels and lymphatics. Herein, a molten-salt method is developed to facilitate the atomic dispersion of Mn or Co ions homogeneously on the surface of akermanite microparticles (AKT-MPs). The micrometer-scale Mn- or Co-AKT-MPs with multi-mimetic enzyme effects are demonstrated to obliterate multiple ROS, thereby protecting the inherent homeostasis between chondrocyte anabolism and catabolism, while suppressing the conversion of macrophages to a pro-inflammatory phenotype. In addition, the microparticles exhibited chondroprotection of ROS-challenged cartilage explants in vitro by limiting the loss of cartilage extracellular matrix (ECM) and the release of degradative enzymes. Furthermore, Mn- or Co-AKT-MPs are injected intra-articularly into monosodium iodoacetate (MIA)-induced OA mice and effectively suppress synovial inflammation, painful symptoms, and progression of early cartilage destruction. Therefore, this microparticle-based antioxidant therapy provides an insight and paradigm to control atomic catalysts integrated with microparticles for efficient catalytic anti-OA treatments.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e05500"},"PeriodicalIF":14.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202505500","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degeneration and local inflammation, and its progression is closely related to the excessive production of reactive oxygen species (ROS). Despite progress made with small molecule antioxidants and nanozymes, effective antioxidant therapy for the long-term elimination of these ROS remains challenging, largely due to the rapid clearance of antioxidants from the joints via synovial vessels and lymphatics. Herein, a molten-salt method is developed to facilitate the atomic dispersion of Mn or Co ions homogeneously on the surface of akermanite microparticles (AKT-MPs). The micrometer-scale Mn- or Co-AKT-MPs with multi-mimetic enzyme effects are demonstrated to obliterate multiple ROS, thereby protecting the inherent homeostasis between chondrocyte anabolism and catabolism, while suppressing the conversion of macrophages to a pro-inflammatory phenotype. In addition, the microparticles exhibited chondroprotection of ROS-challenged cartilage explants in vitro by limiting the loss of cartilage extracellular matrix (ECM) and the release of degradative enzymes. Furthermore, Mn- or Co-AKT-MPs are injected intra-articularly into monosodium iodoacetate (MIA)-induced OA mice and effectively suppress synovial inflammation, painful symptoms, and progression of early cartilage destruction. Therefore, this microparticle-based antioxidant therapy provides an insight and paradigm to control atomic catalysts integrated with microparticles for efficient catalytic anti-OA treatments.

熔盐介导的生物陶瓷微颗粒上原子锰/钴催化剂的合成及其抗骨关节炎的催化作用。
骨关节炎(Osteoarthritis, OA)是一种以软骨退变和局部炎症为特征的慢性进行性关节疾病,其进展与活性氧(reactive oxygen species, ROS)过量产生密切相关。尽管在小分子抗氧化剂和纳米酶方面取得了进展,但长期消除这些ROS的有效抗氧化治疗仍然具有挑战性,这主要是由于抗氧化剂通过滑膜血管和淋巴管从关节中迅速清除。本文提出了一种熔盐法,以促进Mn或Co离子在akermanite微颗粒(akermanite microparticles, AKT-MPs)表面均匀分散。微米级的具有多种模拟酶作用的Mn-或Co-AKT-MPs被证明可以消除多种ROS,从而保护软骨细胞合成代谢和分解代谢之间的固有稳态,同时抑制巨噬细胞向促炎表型的转化。此外,微颗粒通过限制软骨细胞外基质(ECM)的损失和降解酶的释放,在体外表现出ros挑战软骨外植体的软骨保护作用。此外,将Mn-或Co-AKT-MPs关节内注射到碘乙酸钠(MIA)诱导的OA小鼠中,可有效抑制滑膜炎症、疼痛症状和早期软骨破坏的进展。因此,这种基于微颗粒的抗氧化治疗为控制原子催化剂与微颗粒的结合提供了一种有效的催化抗oa治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信