Chuandong Lang, Xiangyu Mu, Kun Chen, Xinwen Wang, Yuluo Rong, Jia Wang, Zongcheng Yang, Chi Yin, Yuhu Dai, Jun Xiao, Wenzhi Zhang
{"title":"Epigenetic Activation of CCDC183-AS1 Promotes Osteoclastogenesis and Prostate Cancer Bone Metastasis Through the FUBP1/LIGHT Axis.","authors":"Chuandong Lang, Xiangyu Mu, Kun Chen, Xinwen Wang, Yuluo Rong, Jia Wang, Zongcheng Yang, Chi Yin, Yuhu Dai, Jun Xiao, Wenzhi Zhang","doi":"10.1002/advs.202413288","DOIUrl":null,"url":null,"abstract":"<p><p>Bone metastasis (BM) is a major contributor to poor prognosis of prostate cancer (PCa); however, the underlying mechanisms of PCa BM remain poorly understood. A better understanding of these processes may provide critical insights for developing effective preventive and therapeutic strategies for PCa BM. In this study, significant upregulation of CCDC183-AS1 in PCa BM is identified, which is associated with disease progression. CCDC183-AS1 overexpression enhanced the ability of PCa cells to spread to the bone by inducing osteoclastogenesis and aiding in the creation of a BM niche. Mechanistically, CCDC183-AS1 interacted with FUBP1 and enhanced its stability by inhibiting JTV-1-mediated ubiquitination and degradation of FUBP1, which promoted the transcription of TNFSF14 (LIGHT). Copy number gain-induced upregulation of KDM5C epigenetically enhanced CCDC183-AS1 expression by recruiting TET1 to its promoter and promoting DNA demethylation. Significantly, the administration of the selective FUBP1 inhibitor, FUBP1-IN-1, is shown to effectively suppress CCDC183-AS1-induced PCa BM. These results shed light on the involvement of CCDC183-AS1 in enhancing osteoclastogenesis and the underlying mechanism in facilitating PCa BM, offering a potential avenue for therapeutic interventions.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e13288"},"PeriodicalIF":14.3000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413288","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bone metastasis (BM) is a major contributor to poor prognosis of prostate cancer (PCa); however, the underlying mechanisms of PCa BM remain poorly understood. A better understanding of these processes may provide critical insights for developing effective preventive and therapeutic strategies for PCa BM. In this study, significant upregulation of CCDC183-AS1 in PCa BM is identified, which is associated with disease progression. CCDC183-AS1 overexpression enhanced the ability of PCa cells to spread to the bone by inducing osteoclastogenesis and aiding in the creation of a BM niche. Mechanistically, CCDC183-AS1 interacted with FUBP1 and enhanced its stability by inhibiting JTV-1-mediated ubiquitination and degradation of FUBP1, which promoted the transcription of TNFSF14 (LIGHT). Copy number gain-induced upregulation of KDM5C epigenetically enhanced CCDC183-AS1 expression by recruiting TET1 to its promoter and promoting DNA demethylation. Significantly, the administration of the selective FUBP1 inhibitor, FUBP1-IN-1, is shown to effectively suppress CCDC183-AS1-induced PCa BM. These results shed light on the involvement of CCDC183-AS1 in enhancing osteoclastogenesis and the underlying mechanism in facilitating PCa BM, offering a potential avenue for therapeutic interventions.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.