Peng Chen, Shaphan Jernigan, Keren Zhao, George Varghese P J, Mitesha Saha, Charles Kim, Amirhossein Arzani, Gregory Buckner, Jingjie Hu
{"title":"Image-guided embolization using Ta@Ca-Alg microspheres with optimized mechanical performance.","authors":"Peng Chen, Shaphan Jernigan, Keren Zhao, George Varghese P J, Mitesha Saha, Charles Kim, Amirhossein Arzani, Gregory Buckner, Jingjie Hu","doi":"10.1039/d5bm00797f","DOIUrl":null,"url":null,"abstract":"<p><p>Transcatheter arterial embolization (TAE) is a minimally invasive technique used to treat hypervascular tumors, hemorrhage, and vascular abnormalities. Though microspheres (MSs) have achieved widespread clinical use as embolic agents, they often lack imaging opacity, optimal morphology and mechanical properties which can lead to unpredictable trajectories, non-target delivery, and suboptimal embolization. This study developed tantalum-loaded calcium alginate (Ta@Ca-Alg) MSs with intrinsic radiopacity, tunable density, and mechanical properties. Ta@Ca-Alg MSs were synthesized using a gas-shearing method and analyzed for size, morphology, swelling behavior, density, radiopacity, and optimized mechanical properties. The results demonstrated that Ta@Ca-Alg MSs maintained a narrow size distribution, with increasing Ta concentration enhancing radiopacity to levels comparable with the clinical contrast agent OMNIPAQUE 350. Density and Young's modulus corresponding to different Ta concentrations were also investigated. Phantom model testing validated effective vessel occlusion and controlled penetration. <i>In vitro</i> hemocompatibility, sterility, and cytotoxicity studies confirmed excellent biocompatibility. These findings suggest that Ta@Ca-Alg MSs are a promising radiopaque embolic agent with optimized radiopacity, density, and mechanical properties, offering excellent potential for TAE procedures.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm00797f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Transcatheter arterial embolization (TAE) is a minimally invasive technique used to treat hypervascular tumors, hemorrhage, and vascular abnormalities. Though microspheres (MSs) have achieved widespread clinical use as embolic agents, they often lack imaging opacity, optimal morphology and mechanical properties which can lead to unpredictable trajectories, non-target delivery, and suboptimal embolization. This study developed tantalum-loaded calcium alginate (Ta@Ca-Alg) MSs with intrinsic radiopacity, tunable density, and mechanical properties. Ta@Ca-Alg MSs were synthesized using a gas-shearing method and analyzed for size, morphology, swelling behavior, density, radiopacity, and optimized mechanical properties. The results demonstrated that Ta@Ca-Alg MSs maintained a narrow size distribution, with increasing Ta concentration enhancing radiopacity to levels comparable with the clinical contrast agent OMNIPAQUE 350. Density and Young's modulus corresponding to different Ta concentrations were also investigated. Phantom model testing validated effective vessel occlusion and controlled penetration. In vitro hemocompatibility, sterility, and cytotoxicity studies confirmed excellent biocompatibility. These findings suggest that Ta@Ca-Alg MSs are a promising radiopaque embolic agent with optimized radiopacity, density, and mechanical properties, offering excellent potential for TAE procedures.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.