Engineered Silyl Lipids to Modulate Liposome and Lipid Nanoparticle Properties for mRNA Delivery

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
Leah A. Patterson, David A. Coppage, Sydney M. Figueroa, Angel A. Cobo, Henriette O’Geen, David J. Segal and Annaliese K. Franz*, 
{"title":"Engineered Silyl Lipids to Modulate Liposome and Lipid Nanoparticle Properties for mRNA Delivery","authors":"Leah A. Patterson,&nbsp;David A. Coppage,&nbsp;Sydney M. Figueroa,&nbsp;Angel A. Cobo,&nbsp;Henriette O’Geen,&nbsp;David J. Segal and Annaliese K. Franz*,&nbsp;","doi":"10.1021/acsabm.5c00932","DOIUrl":null,"url":null,"abstract":"<p >The design of amphiphilic lipid structures can be used to modulate key properties for diverse applications in biology and nanomaterials. We have engineered a structurally diverse class of amphiphilic silyl lipids using a hydrosilylation reaction as the key step to access lipids that vary the silyldimethyl position, branching, length, and substituents in the lipid tail. We demonstrate that the size, zeta potential, rRNA encapsulation, stability, bilayer fluidity, and mRNA transfection are controlled by varying the structure of the silyl lipid tail. Five silyl lipids exhibit high encapsulation, and three feature enhanced stability and transfection in HEK293T cells relative to DOTAP as a classic reference lipid. Incorporation of a branching silyldimethyl group (in place of a <i>cis</i> alkene or methylene) increases bilayer fluidity in liposomes.These results support the idea that incorporating a silyldimethyl group and accessing diverse lipid structures can control liposome properties and mRNA delivery, showing promise for using silyl lipid structures in other biology and biomaterial applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 8","pages":"7216–7227"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.5c00932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The design of amphiphilic lipid structures can be used to modulate key properties for diverse applications in biology and nanomaterials. We have engineered a structurally diverse class of amphiphilic silyl lipids using a hydrosilylation reaction as the key step to access lipids that vary the silyldimethyl position, branching, length, and substituents in the lipid tail. We demonstrate that the size, zeta potential, rRNA encapsulation, stability, bilayer fluidity, and mRNA transfection are controlled by varying the structure of the silyl lipid tail. Five silyl lipids exhibit high encapsulation, and three feature enhanced stability and transfection in HEK293T cells relative to DOTAP as a classic reference lipid. Incorporation of a branching silyldimethyl group (in place of a cis alkene or methylene) increases bilayer fluidity in liposomes.These results support the idea that incorporating a silyldimethyl group and accessing diverse lipid structures can control liposome properties and mRNA delivery, showing promise for using silyl lipid structures in other biology and biomaterial applications.

Abstract Image

工程硅基脂调节脂质体和脂质纳米颗粒的mRNA传递特性。
两亲性脂质结构的设计可用于调节生物学和纳米材料中各种应用的关键特性。我们设计了一种结构多样的两亲性硅基脂类,使用硅氢化反应作为获得脂类的关键步骤,这些脂类在脂尾部改变了硅基二甲基的位置、分支、长度和取代基。我们证明了大小、zeta电位、rRNA包封、稳定性、双层流动性和mRNA转染是通过改变硅脂尾部的结构来控制的。五种硅基脂具有高封装性,其中三种作为经典参考脂质,相对于DOTAP,在HEK293T细胞中具有更高的稳定性和转染能力。分支硅基二甲基的加入(代替顺式烯烃或亚甲基)增加了脂质体的双层流动性。这些结果支持了这样一种观点,即结合硅基二甲基并获得不同的脂质结构可以控制脂质体的性质和mRNA的传递,这表明了在其他生物学和生物材料中使用硅基脂质结构的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信