Marryam Murtaza, Muhammad Fayyaz, Mussarat Yasmin, Muhammad Anwar, Kashif Naseer Qureshi, Usman Ahmed Raza
{"title":"A Large-Scale Dataset and Robust Multifeature Representation With Maximum Correlation-Based Feature Fusion and Matching for Apparel Image Retrieval","authors":"Marryam Murtaza, Muhammad Fayyaz, Mussarat Yasmin, Muhammad Anwar, Kashif Naseer Qureshi, Usman Ahmed Raza","doi":"10.1111/exsy.70097","DOIUrl":null,"url":null,"abstract":"<p>Finding the correct match to a probe image from a vast amount of data is critical for the online retrieval of apparel images. These images are captured under an uncontrolled environment (e.g., viewpoint and illumination changes); therefore, such type of data is extremely challenging in Content-Based Image Retrieval (CBIR) research. Even in Google searches, most of the time the query results are provided with inaccurate results or duplicate results due to the minor variations between apparel. Another major challenge is that the extracted feature vector dimensions are too high and difficult to handle. In this paper, a method named Multifeature Representation with Maximum Correlation-based Feature Fusion, and Matching (MFR-MCF<sup>2</sup>M) is proposed for apparel retrieval. This method consists of three modules: (1) Multifeature Representation Module (MFR-M), (2) Maximum Correlation-based Feature Fusion Module (MCF<sup>2</sup>-M) and (3) Multifeature Matching Module (MFM-M). In the MFR module, the shape, texture and deep features of apparel images are extracted using a Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP) and a pretrained deep CNN model, respectively. Also, the dimensionality of extracted features is reduced using the proposed Feature Subselection (FSS) method. The MCF module is implemented to measure the maximum correlation between reduced feature vectors. Finally, MCF<sup>2</sup> is performed using Euclidean distance and a generated Feature Correlation Vector (FCV) to improve the retrieval accuracy and as the benchmark to assess the efficacy of the proposed method. In addition, a new large-scale dataset named Apparel Images Gallery (AIG), which consists of 130,000 images, has been provided to the community. The performance of the proposed MFR-MCF<sup>2</sup>M method is evaluated on three datasets, including two publicly available datasets and the proposed AIG dataset. The retrieval results are obtained after passing through the threshold function of both the Euclidean distance and the computed FCV. The proposed method achieved an accuracy of 78.3% on the clothing dataset, 94.8% on the CR dataset and 89.1% on the proposed AIG dataset. Consequently, the MFR-MCF<sup>2</sup>M outperformed state-of-the-art (SOTA) apparel retrieval methods.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.70097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70097","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Finding the correct match to a probe image from a vast amount of data is critical for the online retrieval of apparel images. These images are captured under an uncontrolled environment (e.g., viewpoint and illumination changes); therefore, such type of data is extremely challenging in Content-Based Image Retrieval (CBIR) research. Even in Google searches, most of the time the query results are provided with inaccurate results or duplicate results due to the minor variations between apparel. Another major challenge is that the extracted feature vector dimensions are too high and difficult to handle. In this paper, a method named Multifeature Representation with Maximum Correlation-based Feature Fusion, and Matching (MFR-MCF2M) is proposed for apparel retrieval. This method consists of three modules: (1) Multifeature Representation Module (MFR-M), (2) Maximum Correlation-based Feature Fusion Module (MCF2-M) and (3) Multifeature Matching Module (MFM-M). In the MFR module, the shape, texture and deep features of apparel images are extracted using a Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP) and a pretrained deep CNN model, respectively. Also, the dimensionality of extracted features is reduced using the proposed Feature Subselection (FSS) method. The MCF module is implemented to measure the maximum correlation between reduced feature vectors. Finally, MCF2 is performed using Euclidean distance and a generated Feature Correlation Vector (FCV) to improve the retrieval accuracy and as the benchmark to assess the efficacy of the proposed method. In addition, a new large-scale dataset named Apparel Images Gallery (AIG), which consists of 130,000 images, has been provided to the community. The performance of the proposed MFR-MCF2M method is evaluated on three datasets, including two publicly available datasets and the proposed AIG dataset. The retrieval results are obtained after passing through the threshold function of both the Euclidean distance and the computed FCV. The proposed method achieved an accuracy of 78.3% on the clothing dataset, 94.8% on the CR dataset and 89.1% on the proposed AIG dataset. Consequently, the MFR-MCF2M outperformed state-of-the-art (SOTA) apparel retrieval methods.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.