A Low-Frequency Transformer Protection Method Based on Excitation Inductance Parameter Identification

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuping Gao, Zhe Quan, Xinyu Wu, Chenqing Wang, Shi Chen, Yaming Ge, Xiangping Kong
{"title":"A Low-Frequency Transformer Protection Method Based on Excitation Inductance Parameter Identification","authors":"Shuping Gao,&nbsp;Zhe Quan,&nbsp;Xinyu Wu,&nbsp;Chenqing Wang,&nbsp;Shi Chen,&nbsp;Yaming Ge,&nbsp;Xiangping Kong","doi":"10.1049/elp2.70064","DOIUrl":null,"url":null,"abstract":"<p>As the core hub equipment of offshore wind power low-frequency transmission systems, low-frequency transformers generate complex harmonic disturbances during internal faults, severely compromising the reliability of traditional current differential protection. To address this engineering challenge, this paper innovatively proposes a transformer fast main protection method based on excitation inductance parameter identification. Rooted in the unique application scenarios of offshore wind power, the research focuses on overcoming the limitations of existing ratio-restraint differential protection constrained by magnetising inrush current identification. Specifically, the distinctive harmonic characteristics exhibited during low-frequency transformer faults can invalidate second-harmonic restraint principles. A novel identification model based on the dynamic characteristics of instantaneous excitation inductance is developed, which breaks through the limitations of traditional harmonic analysis methods and achieves precise discrimination between fault currents and magnetising inrush currents using single-terminal current-voltage data. Simulation experiments demonstrate that this method can reduce protection operation time to less than 10 ms, particularly suitable for special offshore platform conditions characterised by space constraints and maintenance difficulties. The proposed approach provides critical technical support for enhancing low-frequency transformer protection in offshore wind farm grid-connected low-frequency transmission systems, demonstrating significant engineering application value.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As the core hub equipment of offshore wind power low-frequency transmission systems, low-frequency transformers generate complex harmonic disturbances during internal faults, severely compromising the reliability of traditional current differential protection. To address this engineering challenge, this paper innovatively proposes a transformer fast main protection method based on excitation inductance parameter identification. Rooted in the unique application scenarios of offshore wind power, the research focuses on overcoming the limitations of existing ratio-restraint differential protection constrained by magnetising inrush current identification. Specifically, the distinctive harmonic characteristics exhibited during low-frequency transformer faults can invalidate second-harmonic restraint principles. A novel identification model based on the dynamic characteristics of instantaneous excitation inductance is developed, which breaks through the limitations of traditional harmonic analysis methods and achieves precise discrimination between fault currents and magnetising inrush currents using single-terminal current-voltage data. Simulation experiments demonstrate that this method can reduce protection operation time to less than 10 ms, particularly suitable for special offshore platform conditions characterised by space constraints and maintenance difficulties. The proposed approach provides critical technical support for enhancing low-frequency transformer protection in offshore wind farm grid-connected low-frequency transmission systems, demonstrating significant engineering application value.

Abstract Image

基于励磁电感参数辨识的低频变压器保护方法
低频变压器作为海上风电低频输电系统的核心枢纽设备,在内部故障时产生复杂的谐波干扰,严重影响了传统电流差动保护的可靠性。针对这一工程难题,本文创新性地提出了一种基于励磁电感参数识别的变压器快速主保护方法。针对海上风电独特的应用场景,研究重点在于克服现有受励磁涌流识别约束的比例约束差动保护的局限性。具体而言,低频变压器故障时所表现出的明显谐波特征使二次谐波抑制原理失效。提出了一种基于瞬时励磁电感动态特性的识别模型,突破了传统谐波分析方法的局限性,利用单端电流电压数据实现了故障电流与励磁涌流的精确识别。仿真实验表明,该方法可将保护操作时间缩短至10 ms以下,特别适用于空间受限、维护困难的特殊海上平台工况。该方法为海上风电场并网低频输电系统中加强低频变压器保护提供了关键的技术支撑,具有重要的工程应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信