Estimating Ecosystem Resilience From Noisy Observational Data

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Mengyang Cai, Yao Zhang, Jinghao Qiu
{"title":"Estimating Ecosystem Resilience From Noisy Observational Data","authors":"Mengyang Cai,&nbsp;Yao Zhang,&nbsp;Jinghao Qiu","doi":"10.1111/gcb.70370","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The resilience of an ecosystem indicates its capacity to recover from disturbances, a quality essential for maintaining ecosystem persistence under global change. Temporal autocorrelation (<span></span><math>\n <semantics>\n <mrow>\n <mi>TAC</mi>\n </mrow>\n <annotation>$$ \\mathrm{TAC} $$</annotation>\n </semantics></math>) of ecosystem states has been increasingly used to measure the change of ecosystem resilience, with increasing <span></span><math>\n <semantics>\n <mrow>\n <mi>TAC</mi>\n </mrow>\n <annotation>$$ \\mathrm{TAC} $$</annotation>\n </semantics></math> representing a decline in resilience and approach toward potential tipping points. However, observations of ecosystem states are inevitably embedded with noise of different kinds, and the extent to which measurement noise may affect resilience assessments remains unclear. This study employs mathematical derivation, idealized experiments, and remote sensing datasets with varying noise levels to examine the effect of measurement noise on the <span></span><math>\n <semantics>\n <mrow>\n <mi>TAC</mi>\n </mrow>\n <annotation>$$ \\mathrm{TAC} $$</annotation>\n </semantics></math> calculation. Our analyses indicate that <span></span><math>\n <semantics>\n <mrow>\n <mi>TAC</mi>\n </mrow>\n <annotation>$$ \\mathrm{TAC} $$</annotation>\n </semantics></math> estimates from noisy datasets are systematically lower than those from noise-free datasets, with the degree of underestimation varying with noise levels, observational frequencies, and pulse-like disturbance intensities. Specifically, higher temporal resolution of observation and greater disturbance intensity enhances the accuracy of <span></span><math>\n <semantics>\n <mrow>\n <mi>TAC</mi>\n </mrow>\n <annotation>$$ \\mathrm{TAC} $$</annotation>\n </semantics></math> estimates under constant noise levels. Additionally, we highlight that temporal changes of noise and disturbance characteristics may bias the trend of <span></span><math>\n <semantics>\n <mrow>\n <mi>TAC</mi>\n </mrow>\n <annotation>$$ \\mathrm{TAC} $$</annotation>\n </semantics></math>, potentially resulting in spurious early warning signals of critical transitions. Employing observations with higher temporal resolution, together with appropriate data processing techniques, can partially mitigate the influence of noise and thereby enable more accurate assessments of global ecosystem resilience.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 7","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70370","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

The resilience of an ecosystem indicates its capacity to recover from disturbances, a quality essential for maintaining ecosystem persistence under global change. Temporal autocorrelation ( TAC $$ \mathrm{TAC} $$ ) of ecosystem states has been increasingly used to measure the change of ecosystem resilience, with increasing TAC $$ \mathrm{TAC} $$ representing a decline in resilience and approach toward potential tipping points. However, observations of ecosystem states are inevitably embedded with noise of different kinds, and the extent to which measurement noise may affect resilience assessments remains unclear. This study employs mathematical derivation, idealized experiments, and remote sensing datasets with varying noise levels to examine the effect of measurement noise on the TAC $$ \mathrm{TAC} $$ calculation. Our analyses indicate that TAC $$ \mathrm{TAC} $$ estimates from noisy datasets are systematically lower than those from noise-free datasets, with the degree of underestimation varying with noise levels, observational frequencies, and pulse-like disturbance intensities. Specifically, higher temporal resolution of observation and greater disturbance intensity enhances the accuracy of TAC $$ \mathrm{TAC} $$ estimates under constant noise levels. Additionally, we highlight that temporal changes of noise and disturbance characteristics may bias the trend of TAC $$ \mathrm{TAC} $$ , potentially resulting in spurious early warning signals of critical transitions. Employing observations with higher temporal resolution, together with appropriate data processing techniques, can partially mitigate the influence of noise and thereby enable more accurate assessments of global ecosystem resilience.

Abstract Image

从噪声观测数据估计生态系统恢复能力
生态系统的恢复力表明其从干扰中恢复的能力,这是在全球变化下维持生态系统持久性所必需的质量。生态系统状态的时间自相关(TAC $$ \mathrm{TAC} $$)已越来越多地用于衡量生态系统恢复力的变化,TAC $$ \mathrm{TAC} $$的增加代表了恢复力的下降和潜在临界点的接近。然而,对生态系统状态的观察不可避免地嵌入了不同类型的噪声,测量噪声对恢复力评估的影响程度尚不清楚。本研究采用数学推导、理想化实验和不同噪声水平的遥感数据集来检验测量噪声对TAC $$ \mathrm{TAC} $$计算的影响。我们的分析表明,有噪声数据集的TAC $$ \mathrm{TAC} $$估定值系统性地低于无噪声数据集的估定值,其低估程度随噪声水平、观测频率和脉冲样干扰强度而变化。具体而言,较高的观测时间分辨率和较大的干扰强度提高了恒定噪声水平下TAC $$ \mathrm{TAC} $$估计的准确性。此外,我们强调噪声和干扰特性的时间变化可能会使TAC $$ \mathrm{TAC} $$的趋势产生偏差,可能导致关键转变的虚假预警信号。采用较高时间分辨率的观测资料,加上适当的数据处理技术,可以部分减轻噪声的影响,从而能够更准确地评估全球生态系统的复原力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信