Multivariate Data Analysis Methods and Their Application in Lipidomics: A Gentle Comment on Appropriateness and Reliability Criteria

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Anna Migni, Desirée Bartolini, Giada Marcantonini, Roccaldo Sardella, Mario Rende, Alessia Tognoloni, Maria Rachele Ceccarini, Francesco Galli
{"title":"Multivariate Data Analysis Methods and Their Application in Lipidomics: A Gentle Comment on Appropriateness and Reliability Criteria","authors":"Anna Migni,&nbsp;Desirée Bartolini,&nbsp;Giada Marcantonini,&nbsp;Roccaldo Sardella,&nbsp;Mario Rende,&nbsp;Alessia Tognoloni,&nbsp;Maria Rachele Ceccarini,&nbsp;Francesco Galli","doi":"10.1111/jpi.70068","DOIUrl":null,"url":null,"abstract":"<p>In response to Yoshiyasu Takefuji's critique regarding the use of Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) in the study “Melatonin Repairs the Lipidome of Human Hepatocytes Exposed to Cd and Free Fatty Acid-Induced Lipotoxicity,” we provide a methodological clarification. PCA and PLS-DA are well-established, widely validated tools for exploratory analysis of high-dimensional omics data, including lipidomics data. Although these methods are linear, they are appropriate for capturing systematic and directional variations in complex biological systems, particularly in controlled in vitro models like ours. Our analytical approach integrates PCA and PLS-DA with rigorous statistical testing, data transformations, and biological validation, ensuring robustness and biological relevance of the findings. We reaffirm that these methods represent a standard, reliable practice in lipidomics, and the potential of nonlinear techniques does not diminish the appropriateness or utility of linear multivariate models when applied with scientific rigor.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 4","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70068","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

In response to Yoshiyasu Takefuji's critique regarding the use of Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) in the study “Melatonin Repairs the Lipidome of Human Hepatocytes Exposed to Cd and Free Fatty Acid-Induced Lipotoxicity,” we provide a methodological clarification. PCA and PLS-DA are well-established, widely validated tools for exploratory analysis of high-dimensional omics data, including lipidomics data. Although these methods are linear, they are appropriate for capturing systematic and directional variations in complex biological systems, particularly in controlled in vitro models like ours. Our analytical approach integrates PCA and PLS-DA with rigorous statistical testing, data transformations, and biological validation, ensuring robustness and biological relevance of the findings. We reaffirm that these methods represent a standard, reliable practice in lipidomics, and the potential of nonlinear techniques does not diminish the appropriateness or utility of linear multivariate models when applied with scientific rigor.

Abstract Image

多变量数据分析方法及其在脂质组学中的应用:对适当性和可靠性标准的评析
针对Yoshiyasu Takefuji在研究“褪黑激素修复暴露于Cd和游离脂肪酸诱导的脂肪毒性的人肝细胞的脂质组”中使用主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)的批评,我们提供了一个方法上的澄清。PCA和PLS-DA是完善的,广泛验证的工具,用于探索性分析高维组学数据,包括脂质组学数据。虽然这些方法是线性的,但它们适用于捕获复杂生物系统中的系统和方向变化,特别是在像我们这样的受控体外模型中。我们的分析方法将PCA和PLS-DA与严格的统计测试、数据转换和生物学验证相结合,确保了研究结果的稳健性和生物学相关性。我们重申,这些方法代表了脂质组学中标准的、可靠的实践,非线性技术的潜力不会减少线性多元模型在科学严格应用时的适用性或实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信