CO2 hydrate sequestration in unsealed submarine sediments: A 4D pore-scale experimental investigation

IF 5.5 0 ENERGY & FUELS
Yanfang Li , Tong Zhang , Liang Yuan , Ming Tang , Ruilong Li , Yongqiang Chen , Wen Luo , Chuanjiu Zhang
{"title":"CO2 hydrate sequestration in unsealed submarine sediments: A 4D pore-scale experimental investigation","authors":"Yanfang Li ,&nbsp;Tong Zhang ,&nbsp;Liang Yuan ,&nbsp;Ming Tang ,&nbsp;Ruilong Li ,&nbsp;Yongqiang Chen ,&nbsp;Wen Luo ,&nbsp;Chuanjiu Zhang","doi":"10.1016/j.jgsce.2025.205734","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> hydrate sequestration in marine sediments has been identified as a safe, large-scale, long-term carbon removal method. Influenced by the high pressure and low temperature, the dynamic formation of CO<sub>2</sub> hydrate has not been fully investigated. We thus design and construct a low-field nuclear magnetic resonance (LF-NMR) apparatus to investigate the <em>in-situ</em> dynamic process of CO<sub>2</sub> hydrate formation. The temporal-spatial evolution of CO<sub>2</sub> hydrate formation is analyzed to reveal the generation and distribution of CO<sub>2</sub> hydrate as a function of pressure and initial water saturation. The results reveal that CO<sub>2</sub> hydrate mainly forms in macropores, where water-to-hydrate conversion rate exceeds 81 %, while the conversion rate is below 27 % in micropores. The spatial distribution of CO<sub>2</sub> hydrate exhibits strong heterogeneity, and the hydrate formation preferentially occurs where the ratio of gas-water volume is 0.2–0.8. Increased injection pressure improved the heterogeneity, as evidenced by the increased heterogeneity index from 6.18 to 12.8. The increased injection pressure cannot enhance CO<sub>2</sub>-to-hydrate conversion at similar water saturation levels although improving the conversion rate of water-to-hydrate. Regardless of the initial water saturation, lower injection pressure has a higher CO<sub>2</sub>-to-hydrate conversion, approximately 95.2 % (3 MPa) and 86.5 % (4 MPa), respectively. This study advances the understanding of CO<sub>2</sub> hydrate formation dynamics and demonstrates that lower injection pressure is more favorable for hydrate-based marine CO<sub>2</sub> sequestration strategies.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"143 ","pages":"Article 205734"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925001980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 hydrate sequestration in marine sediments has been identified as a safe, large-scale, long-term carbon removal method. Influenced by the high pressure and low temperature, the dynamic formation of CO2 hydrate has not been fully investigated. We thus design and construct a low-field nuclear magnetic resonance (LF-NMR) apparatus to investigate the in-situ dynamic process of CO2 hydrate formation. The temporal-spatial evolution of CO2 hydrate formation is analyzed to reveal the generation and distribution of CO2 hydrate as a function of pressure and initial water saturation. The results reveal that CO2 hydrate mainly forms in macropores, where water-to-hydrate conversion rate exceeds 81 %, while the conversion rate is below 27 % in micropores. The spatial distribution of CO2 hydrate exhibits strong heterogeneity, and the hydrate formation preferentially occurs where the ratio of gas-water volume is 0.2–0.8. Increased injection pressure improved the heterogeneity, as evidenced by the increased heterogeneity index from 6.18 to 12.8. The increased injection pressure cannot enhance CO2-to-hydrate conversion at similar water saturation levels although improving the conversion rate of water-to-hydrate. Regardless of the initial water saturation, lower injection pressure has a higher CO2-to-hydrate conversion, approximately 95.2 % (3 MPa) and 86.5 % (4 MPa), respectively. This study advances the understanding of CO2 hydrate formation dynamics and demonstrates that lower injection pressure is more favorable for hydrate-based marine CO2 sequestration strategies.

Abstract Image

未密封海底沉积物中CO2水合物固存:4D孔隙尺度实验研究
海洋沉积物中CO2水合物固存是一种安全、大规模、长期的碳去除方法。在高压和低温的影响下,CO2水合物的动态形成尚未得到充分的研究。因此,我们设计并构建了一个低场核磁共振(LF-NMR)装置来研究CO2水合物的原位动态过程。分析了CO2水合物形成的时空演化过程,揭示了CO2水合物的生成和分布随压力和初始含水饱和度的变化规律。结果表明,CO2水合物主要形成于大孔隙中,其水-水合物转化率超过81%,而微孔隙的水-水合物转化率低于27%。CO2水合物的空间分布具有较强的非均质性,水合物优先发生在气水体积比为0.2 ~ 0.8的区域。注入压力的增加改善了非均质性,非均质性指数从6.18提高到12.8。在相同含水饱和度下,增加注入压力虽然提高了水-水合物的转化率,但不能提高co2 -水合物的转化率。无论初始含水饱和度如何,较低的注入压力具有较高的co2 -水合物转化率,分别约为95.2% (3 MPa)和86.5% (4 MPa)。该研究促进了对CO2水合物形成动力学的认识,并表明较低的注入压力更有利于水合物基海洋CO2封存策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信