{"title":"A New Fracture Characterization Method Using Petrophysical Model With Inherent Anisotropy and Borehole Data","authors":"Yongping Wang, Jingye Li, Weiheng Geng, Qiyu Yang, Lei Han, Yuning Zhang","doi":"10.1111/1365-2478.70054","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fractures represent a critical structural feature in unconventional reservoirs, as they create essential pathways for the migration and accumulation of oil and gas. Therefore, fracture characterization is a fundamental task in the exploration of unconventional hydrocarbon resources. Conventional fracture characterization methods typically do not account for the inherent anisotropy of the formation, which arises from the sedimentary environment and fluid distribution, often leading to inaccurate fracture predictions. To address this challenge, we propose a petrophysical model that incorporates inherent anisotropy, employing rock physics modelling to accurately characterize fracture distribution. Furthermore, to reduce the substantial workload involved in manually calibrating the petrophysical model, we introduce a one-dimensional convolutional neural network combined with an attention mechanism. By leveraging the advanced nonlinear learning capabilities of the convolutional neural network, we aim to fit the petrophysical model and extend its application across all exploration wells and the entire field. The effectiveness and feasibility of the proposed method are demonstrated through experiments using actual borehole data from a fracture-dominated reservoir.</p>\n </div>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70054","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fractures represent a critical structural feature in unconventional reservoirs, as they create essential pathways for the migration and accumulation of oil and gas. Therefore, fracture characterization is a fundamental task in the exploration of unconventional hydrocarbon resources. Conventional fracture characterization methods typically do not account for the inherent anisotropy of the formation, which arises from the sedimentary environment and fluid distribution, often leading to inaccurate fracture predictions. To address this challenge, we propose a petrophysical model that incorporates inherent anisotropy, employing rock physics modelling to accurately characterize fracture distribution. Furthermore, to reduce the substantial workload involved in manually calibrating the petrophysical model, we introduce a one-dimensional convolutional neural network combined with an attention mechanism. By leveraging the advanced nonlinear learning capabilities of the convolutional neural network, we aim to fit the petrophysical model and extend its application across all exploration wells and the entire field. The effectiveness and feasibility of the proposed method are demonstrated through experiments using actual borehole data from a fracture-dominated reservoir.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.