Noora Kantola , Jeffrey M. Welker , A. Joshua Leffler , Juho Lämsä , Riku Paavola , Otso Suominen , Maria Väisänen
{"title":"Impacts of winter climate change on northern forest understory carbon dioxide exchange determined by reindeer grazing","authors":"Noora Kantola , Jeffrey M. Welker , A. Joshua Leffler , Juho Lämsä , Riku Paavola , Otso Suominen , Maria Väisänen","doi":"10.1016/j.scitotenv.2025.180089","DOIUrl":null,"url":null,"abstract":"<div><div>In northern regions, the ongoing climate change is altering snow depth with complex consequences for carbon dioxide (CO<sub>2</sub>) exchange and thus, global carbon (C) balance. In addition, ungulate grazers such as reindeer and caribou often alter plant and soil properties that may lead to modifications in the magnitudes and patterns of CO<sub>2</sub> exchange. To understand how reindeer grazing, coupled with changes in snow depth affects CO<sub>2</sub> exchange, we used recent snow treatments (ambient, reduced, and increased snow depth) combined with 25- and 55-year-old reindeer exclusions and the adjacent grazed areas in boreal and subarctic Scots pine forests that are main winter pastures for reindeer/caribou and cover a significant portion of boreal and subarctic landscapes. At both study sites, we measured understory net ecosystem exchange (i.e., NEE), ecosystem respiration (i.e., ER), and gross ecosystem production (i.e., GEP) over two snow-free seasons. We found that 55 years of reindeer exclusion increased C source strength by 136 % under ambient snow depth and 205 % under reduced snow depth in comparison to the grazed area with respective snow conditions. On the contrary, increased snow depth decreased C source strength inside the exclusion offsetting the difference between reindeer grazing treatments. Our results show that grazing may enhance ecosystem stability to winter climate change in comparison to long-term absence of grazing. This highlights the complexity of climate-grazer interactions in functioning of northern ecosystems which are experiencing variations in snow depth.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"995 ","pages":"Article 180089"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725017292","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In northern regions, the ongoing climate change is altering snow depth with complex consequences for carbon dioxide (CO2) exchange and thus, global carbon (C) balance. In addition, ungulate grazers such as reindeer and caribou often alter plant and soil properties that may lead to modifications in the magnitudes and patterns of CO2 exchange. To understand how reindeer grazing, coupled with changes in snow depth affects CO2 exchange, we used recent snow treatments (ambient, reduced, and increased snow depth) combined with 25- and 55-year-old reindeer exclusions and the adjacent grazed areas in boreal and subarctic Scots pine forests that are main winter pastures for reindeer/caribou and cover a significant portion of boreal and subarctic landscapes. At both study sites, we measured understory net ecosystem exchange (i.e., NEE), ecosystem respiration (i.e., ER), and gross ecosystem production (i.e., GEP) over two snow-free seasons. We found that 55 years of reindeer exclusion increased C source strength by 136 % under ambient snow depth and 205 % under reduced snow depth in comparison to the grazed area with respective snow conditions. On the contrary, increased snow depth decreased C source strength inside the exclusion offsetting the difference between reindeer grazing treatments. Our results show that grazing may enhance ecosystem stability to winter climate change in comparison to long-term absence of grazing. This highlights the complexity of climate-grazer interactions in functioning of northern ecosystems which are experiencing variations in snow depth.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.