{"title":"Microscopic origin of the spin-splitting in altermagnets","authors":"Suyoung Lee , Minjae Kim , Changyoung Kim","doi":"10.1016/j.cap.2025.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>Altermagnets, characterized by spin-split bands without net magnetization, have recently emerged as a promising platform for spintronics. However, their microscopic mechanisms remain elusive, often relying on abstract group theory. In this work, we present an intuitive and pedagogical framework to understand the origin of spin splitting in altermagnets. We identify two essential ingredients: (1) alternating spin-polarized wavefunction localization on sublattices, and (2) broken translational symmetry caused by distortions in non-magnetic ion cages. We discuss a minimal model Hamiltonian based on an atomic exchange-driven spin splitting and anisotropic hopping that captures these effects and reproduces the hallmark features of altermagnetic band structures, including nodal spin degeneracies and large spin splittings. Our model is further validated by ab initio calculations on MnF<sub>2</sub>. By demystifying the microscopic origins of altermagnetism, our work bridges symmetry analysis and material realizations, shedding light on practical designs of altermagnetic spintronic devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"79 ","pages":"Pages 29-33"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001439","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Altermagnets, characterized by spin-split bands without net magnetization, have recently emerged as a promising platform for spintronics. However, their microscopic mechanisms remain elusive, often relying on abstract group theory. In this work, we present an intuitive and pedagogical framework to understand the origin of spin splitting in altermagnets. We identify two essential ingredients: (1) alternating spin-polarized wavefunction localization on sublattices, and (2) broken translational symmetry caused by distortions in non-magnetic ion cages. We discuss a minimal model Hamiltonian based on an atomic exchange-driven spin splitting and anisotropic hopping that captures these effects and reproduces the hallmark features of altermagnetic band structures, including nodal spin degeneracies and large spin splittings. Our model is further validated by ab initio calculations on MnF2. By demystifying the microscopic origins of altermagnetism, our work bridges symmetry analysis and material realizations, shedding light on practical designs of altermagnetic spintronic devices.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.