Mn/al/Ce ternary-doped CaO composites for ultra-stable and solar-enhanced calcium looping thermochemical energy storage: Synergistic effects and atomic-level insights

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Qingyang Mei , Hui Liu , Jinjia Wei
{"title":"Mn/al/Ce ternary-doped CaO composites for ultra-stable and solar-enhanced calcium looping thermochemical energy storage: Synergistic effects and atomic-level insights","authors":"Qingyang Mei ,&nbsp;Hui Liu ,&nbsp;Jinjia Wei","doi":"10.1016/j.solmat.2025.113852","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenges of structural degradation and low solar absorptivity in calcium-based thermochemical energy storage systems under high-temperature cycling, we propose a novel Mn/Al/Ce ternary-doped CaO composite (Ca10Mn1Al1Ce1) optimized for solar-driven calcium looping applications. Through a sol-gel synthesis strategy, the co-doping strategy synergistically integrates structural stabilization mediated by Ca<sub>2</sub>MnO<sub>4</sub>/Ca<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> frameworks, carbonation kinetics enhancement through CeO<sub>2</sub>-induced oxygen vacancies, and Mn element doping, significantly improving the material's solar energy absorption performance. The optimized material demonstrates unprecedented cycling stability with only 5.6 % energy density decay over 200 cycles, outperforming pure CaO (73.5 % degradation after 100 cycles). Kinetic analysis reveals accelerated calcination rates enabled by Mn doping, while DFT calculations confirm an 18.3 % reduction in CaCO<sub>3</sub> decomposition energy barriers. Remarkably, the composite achieves a 3.9-fold enhancement in solar absorptivity through synergistic full-spectrum light harvesting. This work establishes a multifunctional doping strategy that simultaneously addresses sintering resistance, solar absorptance, and reaction kinetics, offering a promising pathway for next-generation concentrated solar power plants requiring high-temperature, long-cycle thermochemical energy storage.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"293 ","pages":"Article 113852"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825004532","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenges of structural degradation and low solar absorptivity in calcium-based thermochemical energy storage systems under high-temperature cycling, we propose a novel Mn/Al/Ce ternary-doped CaO composite (Ca10Mn1Al1Ce1) optimized for solar-driven calcium looping applications. Through a sol-gel synthesis strategy, the co-doping strategy synergistically integrates structural stabilization mediated by Ca2MnO4/Ca3Al2O6 frameworks, carbonation kinetics enhancement through CeO2-induced oxygen vacancies, and Mn element doping, significantly improving the material's solar energy absorption performance. The optimized material demonstrates unprecedented cycling stability with only 5.6 % energy density decay over 200 cycles, outperforming pure CaO (73.5 % degradation after 100 cycles). Kinetic analysis reveals accelerated calcination rates enabled by Mn doping, while DFT calculations confirm an 18.3 % reduction in CaCO3 decomposition energy barriers. Remarkably, the composite achieves a 3.9-fold enhancement in solar absorptivity through synergistic full-spectrum light harvesting. This work establishes a multifunctional doping strategy that simultaneously addresses sintering resistance, solar absorptance, and reaction kinetics, offering a promising pathway for next-generation concentrated solar power plants requiring high-temperature, long-cycle thermochemical energy storage.

Abstract Image

Mn/al/Ce三元掺杂CaO复合材料的超稳定和太阳增强钙环热化学储能:协同效应和原子水平的见解
为了解决高温循环下钙基热化学储能系统结构退化和太阳能吸收率低的挑战,我们提出了一种新的Mn/Al/Ce三元掺杂CaO复合材料(Ca10Mn1Al1Ce1),该复合材料优化用于太阳能驱动的钙环应用。通过溶胶-凝胶合成策略,共掺杂策略协同集成了Ca2MnO4/Ca3Al2O6框架介导的结构稳定、ceo2诱导的氧空位碳化动力学增强和Mn元素掺杂,显著提高了材料的太阳能吸收性能。优化后的材料表现出前所未有的循环稳定性,200次循环后能量密度仅衰减5.6%,优于纯CaO(100次循环后降解73.5%)。动力学分析表明,Mn掺杂加速了煅烧速率,而DFT计算证实,CaCO3分解能垒降低了18.3%。值得注意的是,该复合材料通过协同全光谱光收集实现了3.9倍的太阳吸收率增强。这项工作建立了一种多功能掺杂策略,同时解决了烧结阻力、太阳能吸收率和反应动力学问题,为需要高温、长周期热化学储能的下一代聚光太阳能发电厂提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信