Heisenberg-Pauli-Weyl uncertainty principles for the fractional Dunkl transform on the real line

IF 1.2 3区 数学 Q1 MATHEMATICS
Sunit Ghosh, Younis Ahmad Bhat, Jitendriya Swain
{"title":"Heisenberg-Pauli-Weyl uncertainty principles for the fractional Dunkl transform on the real line","authors":"Sunit Ghosh,&nbsp;Younis Ahmad Bhat,&nbsp;Jitendriya Swain","doi":"10.1016/j.jmaa.2025.129890","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of the paper is two-fold. First, we provide an explicit form of the functions for which equality holds for the uncertainty inequalities studied in <span><span>[11]</span></span>. Second, we establish an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-type Heisenberg-Pauli-Weyl uncertainty principle for the fractional Dunkl transform, with <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mn>2</mn></math></span>. For the case <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>, we further derive a sharper uncertainty principle for the fractional Dunkl transform. Furthermore, we derive conditions leading to equality in both the uncertainty principles obtained.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129890"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006717","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the paper is two-fold. First, we provide an explicit form of the functions for which equality holds for the uncertainty inequalities studied in [11]. Second, we establish an Lp-type Heisenberg-Pauli-Weyl uncertainty principle for the fractional Dunkl transform, with 1p2. For the case p=2, we further derive a sharper uncertainty principle for the fractional Dunkl transform. Furthermore, we derive conditions leading to equality in both the uncertainty principles obtained.
实线上分数阶Dunkl变换的Heisenberg-Pauli-Weyl不确定性原理
这篇论文的目的是双重的。首先,我们给出了[11]中所研究的不确定性不等式等式成立的函数的显式形式。其次,我们建立了分数阶Dunkl变换的lp型Heisenberg-Pauli-Weyl测不准原理,其中1≤p≤2。对于p=2的情况,我们进一步推导出分数阶Dunkl变换的更明显的不确定性原理。在此基础上,导出了两个测不准原理相等的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信