{"title":"A Finite-Sample Bound for Identifying Partially Observed Linear Switched Systems From a Single Trajectory","authors":"Dániel Rácz;Mihály Petreczky;Bálint Daróczy","doi":"10.1109/LCSYS.2025.3580519","DOIUrl":null,"url":null,"abstract":"We derive a finite-sample probabilistic bound on the parameter estimation error of a system identification algorithm for Linear Switched Systems. The algorithm estimates Markov parameters from a single trajectory and applies a variant of the Ho-Kalman algorithm to recover the system matrices. Our bound guarantees statistical consistency under the assumption that the true system exhibits quadratic stability. The proof leverages the theory of weakly dependent processes. To the best of our knowledge, this is the first finite-sample bound for this algorithm in the single-trajectory setting.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1790-1795"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11038920","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11038920/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We derive a finite-sample probabilistic bound on the parameter estimation error of a system identification algorithm for Linear Switched Systems. The algorithm estimates Markov parameters from a single trajectory and applies a variant of the Ho-Kalman algorithm to recover the system matrices. Our bound guarantees statistical consistency under the assumption that the true system exhibits quadratic stability. The proof leverages the theory of weakly dependent processes. To the best of our knowledge, this is the first finite-sample bound for this algorithm in the single-trajectory setting.