V. Anand;P. Krause;B. Bansal;G. Bizarri;G. Anil Kumar;V. Ranga;Varun Sharma
{"title":"3D-Printed Plastic Scintillator: A Potential Avenue for Hetero-Structured Radiation Detectors","authors":"V. Anand;P. Krause;B. Bansal;G. Bizarri;G. Anil Kumar;V. Ranga;Varun Sharma","doi":"10.1109/TNS.2025.3580284","DOIUrl":null,"url":null,"abstract":"The concept of a heterostructure-based scintillation detector has been proposed as a potential alternative to current time-of-flight positron emission tomography (TOF-PET) detectors. In a heterostructure design, a dense scintillator (matrix) works in synergy with a fast-timing light scintillator (filler). The design often includes complex geometries, necessitating precise machining. The application of 3D printing technology can facilitate the fabrication of such complex geometries. This study presents the formulation and fabrication of a 3D-printed plastic scintillator, which has been identified as a potential filler material. The developed scintillator shows better rise and decay times compared to commercial plastic scintillators such as EJ-200. We have measured a coincidence time resolution (CTR) of 225 ps using <inline-formula> <tex-math>$\\gamma - \\gamma $ </tex-math></inline-formula> coincidence. Monte-Carlo simulations were performed using the Geant4 toolkit to validate the advantages of using complex filler material designs. The simulation outcomes demonstrate significant improvement in the performance of heterostructures in the case of complex designs over simpler ones. The findings of this study underscore the promise of using 3D printing technology for producing complex heterostructures. This can help in advancing the development of TOF-PET detectors with comparatively reduced effort.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 7","pages":"2100-2105"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11037507/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of a heterostructure-based scintillation detector has been proposed as a potential alternative to current time-of-flight positron emission tomography (TOF-PET) detectors. In a heterostructure design, a dense scintillator (matrix) works in synergy with a fast-timing light scintillator (filler). The design often includes complex geometries, necessitating precise machining. The application of 3D printing technology can facilitate the fabrication of such complex geometries. This study presents the formulation and fabrication of a 3D-printed plastic scintillator, which has been identified as a potential filler material. The developed scintillator shows better rise and decay times compared to commercial plastic scintillators such as EJ-200. We have measured a coincidence time resolution (CTR) of 225 ps using $\gamma - \gamma $ coincidence. Monte-Carlo simulations were performed using the Geant4 toolkit to validate the advantages of using complex filler material designs. The simulation outcomes demonstrate significant improvement in the performance of heterostructures in the case of complex designs over simpler ones. The findings of this study underscore the promise of using 3D printing technology for producing complex heterostructures. This can help in advancing the development of TOF-PET detectors with comparatively reduced effort.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.