Sharp Hybrid Zonotopes: Set Operations and the Reformulation-Linearization Technique

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Jonah J. Glunt;Joshua A. Robbins;Jacob A. Siefert;Daniel Silvestre;Herschel C. Pangborn
{"title":"Sharp Hybrid Zonotopes: Set Operations and the Reformulation-Linearization Technique","authors":"Jonah J. Glunt;Joshua A. Robbins;Jacob A. Siefert;Daniel Silvestre;Herschel C. Pangborn","doi":"10.1109/LCSYS.2025.3585953","DOIUrl":null,"url":null,"abstract":"Mixed integer set representations, and specifically hybrid zonotopes, have enabled new techniques for reachability and verification of nonlinear and hybrid systems. Mixed-integer sets which have the property that their convex relaxation is equal to their convex hull are said to be sharp. This property allows the convex hull to be computed with minimal overhead, and is known to be important for improving the convergence rates of mixed-integer optimization algorithms that rely on convex relaxations. This letter examines methods for formulating sharp hybrid zonotopes and provides sharpness-preserving methods for performing several key set operations. This letter then shows how the reformulation-linearization technique can be applied to create a sharp realization of a hybrid zonotope that is initially not sharp. A numerical example applies this technique to find the convex hull of a level set of a feedforward ReLU neural network.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1802-1807"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11071984/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed integer set representations, and specifically hybrid zonotopes, have enabled new techniques for reachability and verification of nonlinear and hybrid systems. Mixed-integer sets which have the property that their convex relaxation is equal to their convex hull are said to be sharp. This property allows the convex hull to be computed with minimal overhead, and is known to be important for improving the convergence rates of mixed-integer optimization algorithms that rely on convex relaxations. This letter examines methods for formulating sharp hybrid zonotopes and provides sharpness-preserving methods for performing several key set operations. This letter then shows how the reformulation-linearization technique can be applied to create a sharp realization of a hybrid zonotope that is initially not sharp. A numerical example applies this technique to find the convex hull of a level set of a feedforward ReLU neural network.
尖锐混合分区:设置操作和重新公式-线性化技术
混合整数集表示,特别是混合分区,为非线性和混合系统的可达性和验证提供了新技术。具有凸松弛等于其凸包的性质的混合整数集称为尖锐集。这个属性允许以最小的开销计算凸包,并且已知对于提高依赖于凸松弛的混合整数优化算法的收敛速度是重要的。这封信检查了制定尖锐的混合分区的方法,并提供了执行几个关键集操作的尖锐保持方法。然后,这封信展示了如何应用重新配方线性化技术来创建最初不锋利的混合区域的尖锐实现。应用该方法求出前馈ReLU神经网络水平集的凸包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信