UN3-Mapping: Uncertainty-Aware Neural Non-Projective Signed Distance Fields for 3D Mapping

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Shuangfu Song;Junqiao Zhao;Eduardo Veas;Jiaye Lin;Qiuyi Cao;Chen Ye;Tiantian Feng
{"title":"UN3-Mapping: Uncertainty-Aware Neural Non-Projective Signed Distance Fields for 3D Mapping","authors":"Shuangfu Song;Junqiao Zhao;Eduardo Veas;Jiaye Lin;Qiuyi Cao;Chen Ye;Tiantian Feng","doi":"10.1109/LRA.2025.3588410","DOIUrl":null,"url":null,"abstract":"Building accurate and reliable maps is a critical requirement for autonomous robots. In this letter, we propose UN3-Mapping, an implicit neural mapping method that enables high-quality 3D reconstruction with integrated uncertainty estimation. Our approach employs a hybrid representation: an implicit neural distance field models scene geometry, while an explicit gradient field, optimized from surface normals, derives non-projective signed distance labels from raw range data. These refined distance labels are then used to train our implicit map. For uncertainty estimation, we design an online learning framework to capture the reconstruction uncertainty in a self-supervised manner. Benefiting from the uncertainty-aware map, our method is capable of removing the dynamic obstacles with high uncertainty within the raw point cloud. Extensive experiments show that our approach outperforms existing methods in mapping accuracy and completeness while also exhibiting promising potential for dynamic object segmentation.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8754-8761"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11078897/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Building accurate and reliable maps is a critical requirement for autonomous robots. In this letter, we propose UN3-Mapping, an implicit neural mapping method that enables high-quality 3D reconstruction with integrated uncertainty estimation. Our approach employs a hybrid representation: an implicit neural distance field models scene geometry, while an explicit gradient field, optimized from surface normals, derives non-projective signed distance labels from raw range data. These refined distance labels are then used to train our implicit map. For uncertainty estimation, we design an online learning framework to capture the reconstruction uncertainty in a self-supervised manner. Benefiting from the uncertainty-aware map, our method is capable of removing the dynamic obstacles with high uncertainty within the raw point cloud. Extensive experiments show that our approach outperforms existing methods in mapping accuracy and completeness while also exhibiting promising potential for dynamic object segmentation.
UN3-Mapping:用于3D映射的不确定性感知神经非投影符号距离域
建立准确可靠的地图是自主机器人的关键要求。在这封信中,我们提出了UN3-Mapping,这是一种隐式神经映射方法,可以通过集成的不确定性估计实现高质量的3D重建。我们的方法采用混合表示:隐式神经距离场建模场景几何,而显式梯度场,从表面法线优化,从原始距离数据派生非投影签名距离标签。然后使用这些精炼的距离标签来训练隐式映射。对于不确定性估计,我们设计了一个在线学习框架,以自监督的方式捕获重建的不确定性。利用不确定性感知地图,我们的方法能够去除原始点云中具有高不确定性的动态障碍物。大量的实验表明,我们的方法在映射精度和完整性方面优于现有的方法,同时也显示出动态目标分割的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信