{"title":"Light driven photocatalytic hydrogen generation using BODIPY-thiophene-covalent organic polymers","authors":"Kübra Turgut , Mücahit Özdemir , Gizem Yıldız , Bahattin Yalçın , Sermet Koyuncu , Baybars Köksoy , İmren Hatay Patır","doi":"10.1016/j.ijhydene.2025.150105","DOIUrl":null,"url":null,"abstract":"<div><div>Boron-dipyrromethene (BODIPY) - based dyes have recently garnered attention as sensitizers for photocatalytic hydrogen production. They exhibit high catalytic activity through efficient electron transfer, owing to their unique properties such as high molar absorptivity, adjustable absorption and emission energies, and high fluorescence quantum efficiencies. In this study, the effect of a –OH subunit that can increase hydrophilicity on the photocatalytic hydrogen evolution in BODIPY-thiophene-based covalent organic polymers (COP) was investigated. In the conducted research, COP structures were integrated into BODIPY to enhance their light absorption capabilities, aiming to serve as photocatalysts for energy conversions under simple conditions. In the proposed system, Thiophene-BODIPY-based dyes are integrated into COP structures, where they facilitate electron excitation upon light absorption, thereby playing an effective role in photocatalytic reactions by promoting electron transfer. The photocatalyst, modified with titanium dioxide (TiO<sub>2</sub>) nanoparticles, exhibited notable performance in enhancing the efficiency of the hydrogen production process, owing to its light absorption capabilities, multifunctional fluorescent properties, and electron-accepting characteristics. The synthesized BODIPY-Th-COP-OH_TiO<sub>2</sub> photocatalyst demonstrated higher hydrogen activity compared to BODIPY-Th-COP-CH<sub>3</sub>_TiO<sub>2</sub>, attributed to the presence of hydroxyl groups promoted hydrophilic character in the catalyst structure. Therefore, BODIPY-Th-COP-X_TiO<sub>2</sub> photocatalysts (X: OH, CH<sub>3</sub>) utilizing methanol as sacrificial agent yielded hydrogen amounts of 0.197 mmol g<sup>−1</sup> h<sup>−1</sup> and 0.132 mmol g<sup>−1</sup> h<sup>−1</sup> for BODIPY-Th-COP-OH_TiO<sub>2</sub> and BODIPY-Th-COP-CH<sub>3</sub>_TiO<sub>2</sub> photocatalysts, respectively, under visible light illumination.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"158 ","pages":"Article 150105"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925031039","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Boron-dipyrromethene (BODIPY) - based dyes have recently garnered attention as sensitizers for photocatalytic hydrogen production. They exhibit high catalytic activity through efficient electron transfer, owing to their unique properties such as high molar absorptivity, adjustable absorption and emission energies, and high fluorescence quantum efficiencies. In this study, the effect of a –OH subunit that can increase hydrophilicity on the photocatalytic hydrogen evolution in BODIPY-thiophene-based covalent organic polymers (COP) was investigated. In the conducted research, COP structures were integrated into BODIPY to enhance their light absorption capabilities, aiming to serve as photocatalysts for energy conversions under simple conditions. In the proposed system, Thiophene-BODIPY-based dyes are integrated into COP structures, where they facilitate electron excitation upon light absorption, thereby playing an effective role in photocatalytic reactions by promoting electron transfer. The photocatalyst, modified with titanium dioxide (TiO2) nanoparticles, exhibited notable performance in enhancing the efficiency of the hydrogen production process, owing to its light absorption capabilities, multifunctional fluorescent properties, and electron-accepting characteristics. The synthesized BODIPY-Th-COP-OH_TiO2 photocatalyst demonstrated higher hydrogen activity compared to BODIPY-Th-COP-CH3_TiO2, attributed to the presence of hydroxyl groups promoted hydrophilic character in the catalyst structure. Therefore, BODIPY-Th-COP-X_TiO2 photocatalysts (X: OH, CH3) utilizing methanol as sacrificial agent yielded hydrogen amounts of 0.197 mmol g−1 h−1 and 0.132 mmol g−1 h−1 for BODIPY-Th-COP-OH_TiO2 and BODIPY-Th-COP-CH3_TiO2 photocatalysts, respectively, under visible light illumination.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.