Performance optimization of solar-wind integrated energy system with hybrid energy storage

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Yu Xu, Jianhui Zhao
{"title":"Performance optimization of solar-wind integrated energy system with hybrid energy storage","authors":"Yu Xu,&nbsp;Jianhui Zhao","doi":"10.1016/j.solener.2025.113794","DOIUrl":null,"url":null,"abstract":"<div><div>A hybrid energy storage integrated energy system (H-IES) was proposed to simultaneously supply electricity, heating, and cooling to a representative energy consumption center (ECC). The system integrates wind–solar power, a dual-organic Rankine cycle (DORC), an ejector refrigeration cycle (ERC), and thermal/hydrogen/CO<sub>2</sub>-based storage. Compared to the conventional ORC, the DORC demonstrates superior thermos-economic performance under high-temperature conditions, with toluene identified as the optimal working fluid. Parametric analysis reveals strong nonlinear and coupled interactions among design parameters, highlighting the necessity of balancing efficiency, cost, and storage scale. Results show that among four metaheuristic algorithms, the grey wolf optimizer (GWO) achieves the highest convergence efficiency and economic benefit (NPV = 122.6 M$). Multi-objective optimization using MOGWO, combined with TOPSIS analysis, yields a robust optimal solution (CC = 0.8292) under varying NPV weightings. Under optimal design case, the system delivers 124.72 GWh annually, with 29.71 % renewable efficiency, 64.63 % energy supply rate, and 99.46 kt CO<sub>2</sub> reduction. By incorporating the energy storage system (ESS), the H-IES effectively mitigates the intermittency of renewable energy, reducing the generation fluctuation rate from 10.31 % to 8.37 %, while keeping the curtailment rate of renewable energy below 1 %. Even under a high discount rate (r = 0.08), the profitability index (PI &gt; 1) confirms the economic viability and investment resilience of H-IES.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"300 ","pages":"Article 113794"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005572","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A hybrid energy storage integrated energy system (H-IES) was proposed to simultaneously supply electricity, heating, and cooling to a representative energy consumption center (ECC). The system integrates wind–solar power, a dual-organic Rankine cycle (DORC), an ejector refrigeration cycle (ERC), and thermal/hydrogen/CO2-based storage. Compared to the conventional ORC, the DORC demonstrates superior thermos-economic performance under high-temperature conditions, with toluene identified as the optimal working fluid. Parametric analysis reveals strong nonlinear and coupled interactions among design parameters, highlighting the necessity of balancing efficiency, cost, and storage scale. Results show that among four metaheuristic algorithms, the grey wolf optimizer (GWO) achieves the highest convergence efficiency and economic benefit (NPV = 122.6 M$). Multi-objective optimization using MOGWO, combined with TOPSIS analysis, yields a robust optimal solution (CC = 0.8292) under varying NPV weightings. Under optimal design case, the system delivers 124.72 GWh annually, with 29.71 % renewable efficiency, 64.63 % energy supply rate, and 99.46 kt CO2 reduction. By incorporating the energy storage system (ESS), the H-IES effectively mitigates the intermittency of renewable energy, reducing the generation fluctuation rate from 10.31 % to 8.37 %, while keeping the curtailment rate of renewable energy below 1 %. Even under a high discount rate (r = 0.08), the profitability index (PI > 1) confirms the economic viability and investment resilience of H-IES.
具有混合储能的太阳能-风能集成系统性能优化
提出了一种混合储能集成能源系统(H-IES),为某代表性能源消耗中心(ECC)同时供电、供热、供冷。该系统集成了风能、太阳能、双有机朗肯循环(DORC)、喷射式制冷循环(ERC)和基于热/氢/二氧化碳的储存。与传统ORC相比,DORC在高温条件下表现出优越的热经济性,甲苯被确定为最佳工作流体。参数分析揭示了设计参数之间强烈的非线性和耦合相互作用,突出了平衡效率、成本和存储规模的必要性。结果表明,在四种元启发式算法中,灰狼优化算法(GWO)的收敛效率和经济效益最高(NPV = 1.262亿美元)。利用MOGWO进行多目标优化,结合TOPSIS分析,得到了不同NPV权重下的鲁棒最优解(CC = 0.8292)。在优化设计工况下,系统年发电量124.72 GWh,可再生能源利用率29.71%,供电量64.63%,二氧化碳减排99.46 kt。通过引入储能系统(ESS), H-IES有效缓解了可再生能源的间歇性,将发电波动率从10.31%降至8.37%,同时将可再生能源弃电率控制在1%以下。即使在高贴现率(r = 0.08)下,盈利能力指数(PI >;1)证实了H-IES的经济生存能力和投资弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信