Rasoul Talebian, Ali Pourian, Pouya Zakerabbasi, Sina Maghsoudy, Sajjad Habibzadeh
{"title":"Insights into energy efficiency for vanadium redox flow battery (VRFB) using the artificial intelligence technique","authors":"Rasoul Talebian, Ali Pourian, Pouya Zakerabbasi, Sina Maghsoudy, Sajjad Habibzadeh","doi":"10.1016/j.apenergy.2025.126485","DOIUrl":null,"url":null,"abstract":"<div><div>Vanadium redox flow battery (VRFB) offers a sustainable and reliable solution for large-scale energy storage applications. This study represents the first investigation into the comprehensive data-driven analysis of inter-parameter correlation and prediction of the energy efficiency of VRFBs utilizing the Gaussian Process Regression (GPR) model. Namely, 420 VRFB datasets were collected from the literature, whereas 10 structural and 2 operational features are considered input parameters. Indeed, in the VRFB cells with the greater active area, i.e., pilot-to-commercial-scale applications, the Serpentine flow field configuration, higher electrolyte concentration, thicker electrodes, and higher felt compression are more prevalent. The outcomes reveal that the current density, membrane type, and electrode treatment with the respective Pearson correlation coefficient values of −0.4167, 0.2862, and 0.1546 significantly affect the VRFBs' energy efficiency. Besides, the developed ML models can accurately result in the associated energy efficiency in the VRFBs, with the highest accuracy of the GPR- Matern5/2. The training and testing R<sup>2</sup> values are 0.9933 and 0.9565, respectively, indicating near-perfect accuracy, making it a reliable model. This research paves the way for improving VRFB performance, advancing its practical application, and providing key insights into AI-driven battery design.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"399 ","pages":"Article 126485"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925012152","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium redox flow battery (VRFB) offers a sustainable and reliable solution for large-scale energy storage applications. This study represents the first investigation into the comprehensive data-driven analysis of inter-parameter correlation and prediction of the energy efficiency of VRFBs utilizing the Gaussian Process Regression (GPR) model. Namely, 420 VRFB datasets were collected from the literature, whereas 10 structural and 2 operational features are considered input parameters. Indeed, in the VRFB cells with the greater active area, i.e., pilot-to-commercial-scale applications, the Serpentine flow field configuration, higher electrolyte concentration, thicker electrodes, and higher felt compression are more prevalent. The outcomes reveal that the current density, membrane type, and electrode treatment with the respective Pearson correlation coefficient values of −0.4167, 0.2862, and 0.1546 significantly affect the VRFBs' energy efficiency. Besides, the developed ML models can accurately result in the associated energy efficiency in the VRFBs, with the highest accuracy of the GPR- Matern5/2. The training and testing R2 values are 0.9933 and 0.9565, respectively, indicating near-perfect accuracy, making it a reliable model. This research paves the way for improving VRFB performance, advancing its practical application, and providing key insights into AI-driven battery design.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.