Abuzar B.M. Adam , Elhadj Moustapha Diallo , Mohammed Saleh Ali Muthanna , Reem Ibrahim Alkanhel , Ammar Muthanna , Mohammad Hammoudeh
{"title":"Generative AI-driven reinforcement learning for beamforming and scheduling in multi-cell MIMO-NOMA systems","authors":"Abuzar B.M. Adam , Elhadj Moustapha Diallo , Mohammed Saleh Ali Muthanna , Reem Ibrahim Alkanhel , Ammar Muthanna , Mohammad Hammoudeh","doi":"10.1016/j.phycom.2025.102771","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a novel generative artificial intelligence-enhanced primal–dual proximal policy optimization (GAI-PDPPO) framework for joint user scheduling and beamforming in downlink multi-cell multiple-input and multiple-output non-orthogonal multiple access (MC-MIMO-NOMA) networks. Designed to address the challenges of interference-laden environments typical in beyond the fifth generation (B5G)/sixth generation (6G) systems, the proposed method formulates a complex mixed-integer nonlinear programming problem to minimize transmit power under stringent Quality-of-Service (QoS) constraints. Unlike conventional approaches, GAI-PDPPO incorporates an invertible transformer-based actor-critic architecture capable of modeling high-dimensional channel state information and unknown-source interference. Through the integration of generative pretraining and prioritized experience replay, the framework accelerates convergence and enhances policy generalization. Extensive simulations demonstrate that GAI-PDPPO consistently outperforms standard primal–dual PPO and benchmark solutions, achieving lower power consumption and higher spectral efficiency under varying signal-to-interference-plus-noise ratio (SINR) thresholds and interference conditions.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"72 ","pages":"Article 102771"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725001740","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces a novel generative artificial intelligence-enhanced primal–dual proximal policy optimization (GAI-PDPPO) framework for joint user scheduling and beamforming in downlink multi-cell multiple-input and multiple-output non-orthogonal multiple access (MC-MIMO-NOMA) networks. Designed to address the challenges of interference-laden environments typical in beyond the fifth generation (B5G)/sixth generation (6G) systems, the proposed method formulates a complex mixed-integer nonlinear programming problem to minimize transmit power under stringent Quality-of-Service (QoS) constraints. Unlike conventional approaches, GAI-PDPPO incorporates an invertible transformer-based actor-critic architecture capable of modeling high-dimensional channel state information and unknown-source interference. Through the integration of generative pretraining and prioritized experience replay, the framework accelerates convergence and enhances policy generalization. Extensive simulations demonstrate that GAI-PDPPO consistently outperforms standard primal–dual PPO and benchmark solutions, achieving lower power consumption and higher spectral efficiency under varying signal-to-interference-plus-noise ratio (SINR) thresholds and interference conditions.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.