Minh Nhat Huynh , Quoc Minh Lam , Cong Toai Truong , Huy Hung Nguyen , Van Tu Duong
{"title":"Low-cost electronic DC load module design for battery capacity evaluation","authors":"Minh Nhat Huynh , Quoc Minh Lam , Cong Toai Truong , Huy Hung Nguyen , Van Tu Duong","doi":"10.1016/j.ohx.2025.e00679","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid advancements in energy storage technology spurred by the use of electricity in a variety of applications have brought attention to the critical need for precise battery capacity evaluation. The electronic DC load devices play an important role in those tests by replicating real-world discharge conditions. However, commercial DC load systems are often prohibitively expensive and remain largely inaccessible to small enterprises, academic laboratories, and independent researchers. While open-source alternatives offer cost advantages, many existing designs lack scalability, flexibility, and ease of use. This study proposes a low-cost, modular electronic DC load capable of continuous operation at up to <span><math><mrow><mn>50</mn><mi>W</mi></mrow></math></span> per module. With its user-friendly interface and support for numerous other tests, including constant current, constant resistor, constant power, battery evaluation, and high-power pulse charge (HPPC) the proposed electronic DC load is robust and simple to use for battery research and evaluation.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"23 ","pages":"Article e00679"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid advancements in energy storage technology spurred by the use of electricity in a variety of applications have brought attention to the critical need for precise battery capacity evaluation. The electronic DC load devices play an important role in those tests by replicating real-world discharge conditions. However, commercial DC load systems are often prohibitively expensive and remain largely inaccessible to small enterprises, academic laboratories, and independent researchers. While open-source alternatives offer cost advantages, many existing designs lack scalability, flexibility, and ease of use. This study proposes a low-cost, modular electronic DC load capable of continuous operation at up to per module. With its user-friendly interface and support for numerous other tests, including constant current, constant resistor, constant power, battery evaluation, and high-power pulse charge (HPPC) the proposed electronic DC load is robust and simple to use for battery research and evaluation.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.