{"title":"Multi-fidelity modelling of a high bypass ratio turbofan engine with variable area nozzle","authors":"Andrea Magrini, Ernesto Benini","doi":"10.1016/j.jppr.2025.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>Low pressure ratio fans of modern civil turbofans suffer from reduced stall margin in the take-off operating line and at part-speed, requiring variable geometry devices. Variable area nozzles (VAN) are one of the investigated solutions to control engine operating conditions throughout the mission. In this paper, we present a multi-fidelity modelling approach for an ultra-high bypass ratio turbofan engine with a VAN, combining a zero-dimensional thermodynamic cycle simulator using a realistic fan map with two- and three-dimensional detailed computational fluid dynamics (CFD) simulations for internal/external flow coupling. By adopting a novel algorithm to match the cycle conditions to the CFD solutions, the propulsive performance of the turbofan is analysed in a reference aircraft mission. The numerical method captures the effect on thrust generation and nacelle drag, providing a more reliable estimation of the impact of VAN on engine operation and efficiency. Low-speed mission points are confirmed to be those that benefit the most from an enlarged fan nozzle area, with a possible improvement of 3% in terms of thrust and specific fuel consumption at take-off and approach using a 10% larger area, similarly predicted by both 2D and 3D models. A preliminary acoustic evaluation based on semi-empirical noise models indicates a modest effect on noise emissions, with up to 1 dB reduction in microphone signature at the sideline for a nozzle area increased by 10%.</div></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"14 2","pages":"Pages 227-242"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X2500029X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Low pressure ratio fans of modern civil turbofans suffer from reduced stall margin in the take-off operating line and at part-speed, requiring variable geometry devices. Variable area nozzles (VAN) are one of the investigated solutions to control engine operating conditions throughout the mission. In this paper, we present a multi-fidelity modelling approach for an ultra-high bypass ratio turbofan engine with a VAN, combining a zero-dimensional thermodynamic cycle simulator using a realistic fan map with two- and three-dimensional detailed computational fluid dynamics (CFD) simulations for internal/external flow coupling. By adopting a novel algorithm to match the cycle conditions to the CFD solutions, the propulsive performance of the turbofan is analysed in a reference aircraft mission. The numerical method captures the effect on thrust generation and nacelle drag, providing a more reliable estimation of the impact of VAN on engine operation and efficiency. Low-speed mission points are confirmed to be those that benefit the most from an enlarged fan nozzle area, with a possible improvement of 3% in terms of thrust and specific fuel consumption at take-off and approach using a 10% larger area, similarly predicted by both 2D and 3D models. A preliminary acoustic evaluation based on semi-empirical noise models indicates a modest effect on noise emissions, with up to 1 dB reduction in microphone signature at the sideline for a nozzle area increased by 10%.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.