A comprehensive survey on big data privacy and Hadoop security: Insights into encryption mechanisms and emerging trends

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Youness Filaly , Nisrine Berros , Fatna El mendili , Younes El Bouzekri EL idrissi
{"title":"A comprehensive survey on big data privacy and Hadoop security: Insights into encryption mechanisms and emerging trends","authors":"Youness Filaly ,&nbsp;Nisrine Berros ,&nbsp;Fatna El mendili ,&nbsp;Younes El Bouzekri EL idrissi","doi":"10.1016/j.rineng.2025.106203","DOIUrl":null,"url":null,"abstract":"<div><div>Big data has transformed analytics and data processing in many different industries, but securing security and privacy in distributed systems like Hadoop is still rather complex. This article gives a deep analysis of the symmetric, asymmetric, and hybrid encryption techniques applied in Hadoop to preserve massive amounts of data. We critically analyze earlier research, underlining its advantages, flaws, and important trade-offs, specifically with reference to scalability, computing expense, and implementation complexity. Additionally, we analyze new improvements like blockchain integration and post-quantum encryption, analyzing their potential to increase Hadoop security. We find weaknesses in existing techniques via a comparative study and provide a hybrid encryption system aimed at secure and efficient data processing in Hadoop settings. Researchers and practitioners searching for scalable, privacy-preserving big data platform solutions should use this paper as a reference.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"27 ","pages":"Article 106203"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025022753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Big data has transformed analytics and data processing in many different industries, but securing security and privacy in distributed systems like Hadoop is still rather complex. This article gives a deep analysis of the symmetric, asymmetric, and hybrid encryption techniques applied in Hadoop to preserve massive amounts of data. We critically analyze earlier research, underlining its advantages, flaws, and important trade-offs, specifically with reference to scalability, computing expense, and implementation complexity. Additionally, we analyze new improvements like blockchain integration and post-quantum encryption, analyzing their potential to increase Hadoop security. We find weaknesses in existing techniques via a comparative study and provide a hybrid encryption system aimed at secure and efficient data processing in Hadoop settings. Researchers and practitioners searching for scalable, privacy-preserving big data platform solutions should use this paper as a reference.
关于大数据隐私和Hadoop安全的综合调查:对加密机制和新兴趋势的见解
大数据已经改变了许多不同行业的分析和数据处理,但在像Hadoop这样的分布式系统中确保安全和隐私仍然相当复杂。本文深入分析了Hadoop中用于保存大量数据的对称、非对称和混合加密技术。我们批判性地分析了早期的研究,强调了它的优点、缺点和重要的权衡,特别是在可伸缩性、计算费用和实现复杂性方面。此外,我们还分析了区块链集成和后量子加密等新的改进,分析了它们提高Hadoop安全性的潜力。我们通过比较研究发现了现有技术的弱点,并提供了一个混合加密系统,旨在在Hadoop设置中安全高效地处理数据。寻找可扩展的、保护隐私的大数据平台解决方案的研究人员和实践者应该将本文作为参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信