Recent advances in modified Arrhenius activation energy and bioconvection in Williamson nanofluid flow over a bidirectional surface

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE
Tayyaba Akhtar , Muhammad Abid , Basma Souayeh , Fourth D. Muhammad Imran
{"title":"Recent advances in modified Arrhenius activation energy and bioconvection in Williamson nanofluid flow over a bidirectional surface","authors":"Tayyaba Akhtar ,&nbsp;Muhammad Abid ,&nbsp;Basma Souayeh ,&nbsp;Fourth D. Muhammad Imran","doi":"10.1016/j.jppr.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>Non-Newtonian flows have applications in food combination, plasma flow, inherent and organic fluids, antibiotics, and lubrication through oils and greases. This study explores the bidirectional flow of Williamson nanofluid in a porous medium, incorporating thermophoresis, Brownian motion, bioconvection effects, and Arrhenius activation energy over a nonlinear stretching surface. The governing equations are transformed into a dimensionless form using similarity transformations and numerically solved via MATLAB's bvp4c shooting scheme. Results indicate that increasing the Williamson parameter <span><math><mrow><mi>λ</mi></mrow></math></span> and porosity parameter <span><math><mrow><mi>ε</mi></mrow></math></span> reduces velocity, with a 10% rise in <span><math><mrow><mi>λ</mi></mrow></math></span> leading to an 8% velocity reduction. Temperature increases with the thermophoresis parameter <span><math><mrow><mo>(</mo><mrow><mi>N</mi><mi>t</mi></mrow><mo>)</mo></mrow></math></span> where a 15% increase in <span><math><mrow><mi>N</mi><mi>t</mi></mrow></math></span> results in a 7% temperature rise. The Nusselt number improves with a higher Prandtl number <span><math><mrow><mi>Pr</mi></mrow></math></span> increasing by 10% when <span><math><mrow><mi>Pr</mi></mrow></math></span> rises from 5 to 7, while the Sherwood number declines with stronger Brownian motion. These findings provide key insights into heat and mass transfer mechanisms, contributing to advancements in industrial cooling, biomedical applications, and nanofluid-based thermal systems.</div></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"14 2","pages":"Pages 338-351"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X25000264","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Non-Newtonian flows have applications in food combination, plasma flow, inherent and organic fluids, antibiotics, and lubrication through oils and greases. This study explores the bidirectional flow of Williamson nanofluid in a porous medium, incorporating thermophoresis, Brownian motion, bioconvection effects, and Arrhenius activation energy over a nonlinear stretching surface. The governing equations are transformed into a dimensionless form using similarity transformations and numerically solved via MATLAB's bvp4c shooting scheme. Results indicate that increasing the Williamson parameter λ and porosity parameter ε reduces velocity, with a 10% rise in λ leading to an 8% velocity reduction. Temperature increases with the thermophoresis parameter (Nt) where a 15% increase in Nt results in a 7% temperature rise. The Nusselt number improves with a higher Prandtl number Pr increasing by 10% when Pr rises from 5 to 7, while the Sherwood number declines with stronger Brownian motion. These findings provide key insights into heat and mass transfer mechanisms, contributing to advancements in industrial cooling, biomedical applications, and nanofluid-based thermal systems.
改性Arrhenius活化能和Williamson纳米流体双向流动的生物对流研究进展
非牛顿流体在食品组合、等离子体流动、固有流体和有机流体、抗生素以及油脂润滑等领域都有应用。本研究探讨了Williamson纳米流体在多孔介质中的双向流动,包括热电泳、布朗运动、生物对流效应和非线性拉伸表面上的Arrhenius活化能。利用相似变换将控制方程转化为无因次形式,并通过MATLAB的bvp4c射击方案进行数值求解。结果表明,增加Williamson参数λ和孔隙度参数ε会降低速度,λ增加10%会导致速度降低8%。温度随着热泳参数(Nt)的升高而升高,其中Nt增加15%导致温度升高7%。当Pr从5增加到7时,努塞尔数增加,普朗特数Pr增加10%,舍伍德数下降,布朗运动增强。这些发现为传热传质机制提供了重要的见解,有助于工业冷却、生物医学应用和基于纳米流体的热系统的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信