Drug repurposing identifies proteasome inhibitors as antiproliferative agents counteracting inflammation-driven chemoresistance in triple-negative breast cancer organoids
{"title":"Drug repurposing identifies proteasome inhibitors as antiproliferative agents counteracting inflammation-driven chemoresistance in triple-negative breast cancer organoids","authors":"Ariestya Indah Permata Sari , Sittiruk Roytrakul , Pamorn Chittavanich , Duangporn Saengwimol , Natanan Laosillapacharoen , Jakkrit Khamjerm , Suparerk Borwornpinyo , Artit Jinawath , Ronnarat Suvikapakornkul , Panuwat Lertsithichai , Prakasit Chirappapha , Natini Jinawath , Rossukon Kaewkhaw","doi":"10.1016/j.biopha.2025.118359","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options, high relapse rates, and poor survival outcomes, largely due to chemoresistance. This study aimed to identify potential therapeutic strategies by repurposing FDA-approved anticancer drugs using patient-derived TNBC organoids from drug-resistant residual tumors post-chemotherapy. A high-throughput screen of 133 FDA-approved drugs, integrating image-based analysis and drug-sensitivity assays, identified the proteasome inhibitors bortezomib and carfilzomib as potent cytotoxic agents. Proteomic analysis, coupled with translation and cell cycle assays, showed that these inhibitors suppress TNBC organoid growth by downregulating ribosomal protein expression, leading to impaired translation and disrupted cell cycle progression. Furthermore, drug response dynamics confirmed their efficacy in overcoming clinical drug resistance. Transcriptomic profiling revealed that proteasome inhibitors counteract doxorubicin-induced, inflammation-driven resistance through dual anti-inflammatory and antiproliferative effects. Collectively, these findings support proteasome inhibition as a promising therapeutic strategy to overcome chemoresistance in TNBC.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"190 ","pages":"Article 118359"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225005530","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options, high relapse rates, and poor survival outcomes, largely due to chemoresistance. This study aimed to identify potential therapeutic strategies by repurposing FDA-approved anticancer drugs using patient-derived TNBC organoids from drug-resistant residual tumors post-chemotherapy. A high-throughput screen of 133 FDA-approved drugs, integrating image-based analysis and drug-sensitivity assays, identified the proteasome inhibitors bortezomib and carfilzomib as potent cytotoxic agents. Proteomic analysis, coupled with translation and cell cycle assays, showed that these inhibitors suppress TNBC organoid growth by downregulating ribosomal protein expression, leading to impaired translation and disrupted cell cycle progression. Furthermore, drug response dynamics confirmed their efficacy in overcoming clinical drug resistance. Transcriptomic profiling revealed that proteasome inhibitors counteract doxorubicin-induced, inflammation-driven resistance through dual anti-inflammatory and antiproliferative effects. Collectively, these findings support proteasome inhibition as a promising therapeutic strategy to overcome chemoresistance in TNBC.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.