Prevalence and functional impact of the interactions between lysogenic phages and hosts in activated sludge systems: insights from large-scale metagenomics and experimental evidence
Jie Li, Depeng Wang, Qifeng Zhang, Xiwei He, Peng Liu, Lin Ye, Hongqiang Ren, Xu-Xiang Zhang
{"title":"Prevalence and functional impact of the interactions between lysogenic phages and hosts in activated sludge systems: insights from large-scale metagenomics and experimental evidence","authors":"Jie Li, Depeng Wang, Qifeng Zhang, Xiwei He, Peng Liu, Lin Ye, Hongqiang Ren, Xu-Xiang Zhang","doi":"10.1016/j.watres.2025.124270","DOIUrl":null,"url":null,"abstract":"Bacteriophages are the most common biological entities in the activated sludge (AS) of wastewater treatment plants (WWTPs), playing an important role in maintaining or regulating the microbial community. However, the interactions between bacteria and lysogenic phages in AS systems remain poorly understood. In this study, we reconstructed metagenome-assembled genomes (MAGs) from 43 full-scale WWTPs across five countries and found that over 55% of MAGs in AS were lysogenic, highlighting the widespread interactions between lysogenic phages and their hosts. Additionally, diverse novel prophages embedded in the lysogenic MAGs formed complex phage-host interactions, as revealed by the phage-host network, underscoring the intricate relationships between prophages and their microbial hosts. Through <em>in-silico</em> approaches and experimental validation, we confirmed the inducibility and activity of the prophages, showing that prophage induction significantly contributes to the lysis of microorganisms involved in the aerobic oxidation of organic matter, as well as nitrogen and phosphorus removal. This work represents a pioneering large-scale genome-centric metagenomic study, coupled with experimental validation, that uncovers the predominance of lysogenic phage-host interactions in AS systems. It advances our understanding of the pivotal role of prophages in shaping the AS microbiome, particularly in influencing the microbial processes responsible for pollutant degradation and nitrogen and phosphorus removal.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"6 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.124270","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteriophages are the most common biological entities in the activated sludge (AS) of wastewater treatment plants (WWTPs), playing an important role in maintaining or regulating the microbial community. However, the interactions between bacteria and lysogenic phages in AS systems remain poorly understood. In this study, we reconstructed metagenome-assembled genomes (MAGs) from 43 full-scale WWTPs across five countries and found that over 55% of MAGs in AS were lysogenic, highlighting the widespread interactions between lysogenic phages and their hosts. Additionally, diverse novel prophages embedded in the lysogenic MAGs formed complex phage-host interactions, as revealed by the phage-host network, underscoring the intricate relationships between prophages and their microbial hosts. Through in-silico approaches and experimental validation, we confirmed the inducibility and activity of the prophages, showing that prophage induction significantly contributes to the lysis of microorganisms involved in the aerobic oxidation of organic matter, as well as nitrogen and phosphorus removal. This work represents a pioneering large-scale genome-centric metagenomic study, coupled with experimental validation, that uncovers the predominance of lysogenic phage-host interactions in AS systems. It advances our understanding of the pivotal role of prophages in shaping the AS microbiome, particularly in influencing the microbial processes responsible for pollutant degradation and nitrogen and phosphorus removal.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.