An unstructured lattice Boltzmann method for numerical simulation of radiative transfer in porous media

IF 1.9 3区 物理与天体物理 Q2 OPTICS
Caiyun Wang, Xiaochuan Liu, Mingqi Liu, Yijie Wei, Yong Huang
{"title":"An unstructured lattice Boltzmann method for numerical simulation of radiative transfer in porous media","authors":"Caiyun Wang,&nbsp;Xiaochuan Liu,&nbsp;Mingqi Liu,&nbsp;Yijie Wei,&nbsp;Yong Huang","doi":"10.1016/j.jqsrt.2025.109591","DOIUrl":null,"url":null,"abstract":"<div><div>An unstructured lattice Boltzmann method for simulating radiative transfer in porous media at the pore scale is developed based on Chapman-Enskog analysis, Taylor expansion, and finite-volume discretization. The unstructured lattice Boltzmann method achieves an order of magnitude improvement in efficiency over the Monte Carlo method while maintaining comparable accuracy in two-dimensional benchmark cases. Utilizing the developed unstructured lattice Boltzmann method, the effects of skeleton surface emissivity, cross-sectional number, shape, and size on radiative transfer are investigated. Results reveal that skeleton emissivity significantly influences temperature and heat flux distribution, while cross-sectional geometry affects temperature uniformity, especially for structures with fewer pores. The findings underscore the importance of balancing key parameters for optimal thermal radiation performance in porous media. The unstructured lattice Boltzmann method presents a promising tool for advancing the understanding of radiative transfer in complex porous systems.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"346 ","pages":"Article 109591"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325002535","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An unstructured lattice Boltzmann method for simulating radiative transfer in porous media at the pore scale is developed based on Chapman-Enskog analysis, Taylor expansion, and finite-volume discretization. The unstructured lattice Boltzmann method achieves an order of magnitude improvement in efficiency over the Monte Carlo method while maintaining comparable accuracy in two-dimensional benchmark cases. Utilizing the developed unstructured lattice Boltzmann method, the effects of skeleton surface emissivity, cross-sectional number, shape, and size on radiative transfer are investigated. Results reveal that skeleton emissivity significantly influences temperature and heat flux distribution, while cross-sectional geometry affects temperature uniformity, especially for structures with fewer pores. The findings underscore the importance of balancing key parameters for optimal thermal radiation performance in porous media. The unstructured lattice Boltzmann method presents a promising tool for advancing the understanding of radiative transfer in complex porous systems.
多孔介质辐射传递数值模拟的非结构点阵玻尔兹曼方法
基于Chapman-Enskog分析、Taylor展开和有限体积离散,提出了一种模拟多孔介质中辐射传递的非结构晶格玻尔兹曼方法。非结构化晶格玻尔兹曼方法在效率上比蒙特卡罗方法提高了一个数量级,同时在二维基准情况下保持了相当的精度。利用已开发的非结构晶格玻尔兹曼方法,研究了骨架表面发射率、截面数、形状和尺寸对辐射传递的影响。结果表明,骨架发射率显著影响温度和热流密度分布,而截面几何形状影响温度均匀性,特别是对于孔隙较少的结构。这些发现强调了平衡多孔介质中最佳热辐射性能的关键参数的重要性。非结构晶格玻尔兹曼方法提出了一个很有前途的工具,以提高对复杂多孔系统辐射传递的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信