Biomass-derived hierarchical carbon frameworks enable robust microwave absorption

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-07-21 DOI:10.1016/j.matt.2025.102289
Yusen Ai, Ruizhe Xing, Ning Ren, Renliang Huang, Mei Cui, Rongxin Su, Jie Kong
{"title":"Biomass-derived hierarchical carbon frameworks enable robust microwave absorption","authors":"Yusen Ai, Ruizhe Xing, Ning Ren, Renliang Huang, Mei Cui, Rongxin Su, Jie Kong","doi":"10.1016/j.matt.2025.102289","DOIUrl":null,"url":null,"abstract":"The complex electromagnetic environment challenges high-performance electromagnetic wave (EMW) absorbers. Conventional single-layer absorbers face performance decline under oblique incidence due to mismatched transmission paths and thickness constraints from quarter-wavelength theory. To address this, we develop a phosphorylated carbonized wood-phosphorylated carbonized fiber composite (PCW-PCF), combining natural oriented porous meta-structures with a micro-engineered carbon fiber network. This hierarchical framework employs material/structural dispersion engineering to enhance multiple scattering and dielectric losses. The PCW-PCF achieves an ultrabroad 31-GHz absorption band (9–40 GHz, US Naval Research Laboratory (NRL)-arch method), stable performance across polarizations (TE/TM) and oblique incidence (≤60°). Additionally, it demonstrates ultralow density (0.048 g/cm<sup>3</sup>), exceptional specific compressive strength (66.46 MPa cm<sup>−3</sup> g<sup>−1</sup>), and flame retardancy. These findings underscore the significant potential of utilizing sustainable wood-derived materials for the development of high-performance EMW absorption materials.","PeriodicalId":388,"journal":{"name":"Matter","volume":"37 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102289","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The complex electromagnetic environment challenges high-performance electromagnetic wave (EMW) absorbers. Conventional single-layer absorbers face performance decline under oblique incidence due to mismatched transmission paths and thickness constraints from quarter-wavelength theory. To address this, we develop a phosphorylated carbonized wood-phosphorylated carbonized fiber composite (PCW-PCF), combining natural oriented porous meta-structures with a micro-engineered carbon fiber network. This hierarchical framework employs material/structural dispersion engineering to enhance multiple scattering and dielectric losses. The PCW-PCF achieves an ultrabroad 31-GHz absorption band (9–40 GHz, US Naval Research Laboratory (NRL)-arch method), stable performance across polarizations (TE/TM) and oblique incidence (≤60°). Additionally, it demonstrates ultralow density (0.048 g/cm3), exceptional specific compressive strength (66.46 MPa cm−3 g−1), and flame retardancy. These findings underscore the significant potential of utilizing sustainable wood-derived materials for the development of high-performance EMW absorption materials.

Abstract Image

生物质衍生的分层碳框架能够实现强大的微波吸收
复杂的电磁环境对高性能电磁波(EMW)吸收器提出了挑战。由于传输路径不匹配和四分之一波长理论的厚度限制,传统的单层吸收器在斜入射下性能下降。为了解决这个问题,我们开发了一种磷酸化碳化木-磷酸化碳化纤维复合材料(PCW-PCF),将自然取向的多孔元结构与微工程碳纤维网络相结合。这种分层框架采用材料/结构色散工程来增强多重散射和介电损耗。PCW-PCF实现了超远31 GHz吸收波段(9-40 GHz,美国海军研究实验室(NRL)-拱法),跨极化(TE/TM)和斜入射(≤60°)性能稳定。此外,它还具有超低密度(0.048 g/cm3),优异的比抗压强度(66.46 MPa cm−3 g−1)和阻燃性。这些发现强调了利用可持续木材衍生材料开发高性能EMW吸收材料的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信