Organic-inorganic metal halide glass optical fibers for ultralow-loss and bendable photonic applications

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-07-21 DOI:10.1016/j.matt.2025.102277
Qing-Peng Peng, Zi-Lin He, Jing-Hua Chen, Jun-Hua Wei, Jian-Bin Luo, Tian-Chi Wang, Kong-Lan Chen, Dai-Bin Kuang
{"title":"Organic-inorganic metal halide glass optical fibers for ultralow-loss and bendable photonic applications","authors":"Qing-Peng Peng, Zi-Lin He, Jing-Hua Chen, Jun-Hua Wei, Jian-Bin Luo, Tian-Chi Wang, Kong-Lan Chen, Dai-Bin Kuang","doi":"10.1016/j.matt.2025.102277","DOIUrl":null,"url":null,"abstract":"Organic-inorganic metal halides (OIMHs) exhibit remarkable thermodynamic transitions between crystalline and amorphous states, yet their potential application in optical fibers has not been explored. In this study, we present a melt-filling strategy leveraging the low-temperature (230°C) fluidity of (HTPP)<sub>2</sub>MnBr<sub>4</sub> and (HTPP)<sub>2</sub>SbBr<sub>5</sub> (HTPP = hexyltriphenylphosphonium) glasses to fabricate optical fibers with controllable diameters and lengths. These OIMH fibers processed at 230°C feature a core-cladding structure with minimal defects, achieving remarkably low transmission losses of 0.41 dB/cm for Mn-based fibers and 0.16 dB/cm for Sb-based fibers, along with exceptional mechanical flexibility (bending radius ≤0.8 mm). These optical fibers enable information encryption systems and reliable light transmission under bending, demonstrating their potential applications in optical encryption and integrated photonics. This work establishes OIMHs as promising candidates for next-generation optical waveguides.","PeriodicalId":388,"journal":{"name":"Matter","volume":"110 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102277","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic-inorganic metal halides (OIMHs) exhibit remarkable thermodynamic transitions between crystalline and amorphous states, yet their potential application in optical fibers has not been explored. In this study, we present a melt-filling strategy leveraging the low-temperature (230°C) fluidity of (HTPP)2MnBr4 and (HTPP)2SbBr5 (HTPP = hexyltriphenylphosphonium) glasses to fabricate optical fibers with controllable diameters and lengths. These OIMH fibers processed at 230°C feature a core-cladding structure with minimal defects, achieving remarkably low transmission losses of 0.41 dB/cm for Mn-based fibers and 0.16 dB/cm for Sb-based fibers, along with exceptional mechanical flexibility (bending radius ≤0.8 mm). These optical fibers enable information encryption systems and reliable light transmission under bending, demonstrating their potential applications in optical encryption and integrated photonics. This work establishes OIMHs as promising candidates for next-generation optical waveguides.

Abstract Image

用于超低损耗和可弯曲光子应用的有机-无机金属卤化物玻璃光纤
有机-无机金属卤化物(OIMHs)在晶体和非晶态之间表现出显著的热力学转变,但其在光纤中的潜在应用尚未探索。在这项研究中,我们提出了一种熔融填充策略,利用(HTPP)2MnBr4和(HTPP)2SbBr5 (HTPP =己基三苯磷)玻璃的低温(230°C)流动性来制造直径和长度可控的光纤。这些OIMH光纤在230°C下加工,具有最小缺陷的芯包层结构,具有非常低的传输损耗,mn基光纤为0.41 dB/cm, sb基光纤为0.16 dB/cm,同时具有优异的机械灵活性(弯曲半径≤0.8 mm)。这些光纤实现了信息加密系统和弯曲下可靠的光传输,展示了它们在光加密和集成光子学方面的潜在应用。这项工作确立了OIMHs作为下一代光波导的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信