Synergistic two-step modification of polybenzimidazole (PBI) nanofiltration membranes for improved molecular separation in acidic and organic environments
Srinath Ravi, Sung Ju Shin, Saikat Sinha Ray, Young-Nam Kwon
{"title":"Synergistic two-step modification of polybenzimidazole (PBI) nanofiltration membranes for improved molecular separation in acidic and organic environments","authors":"Srinath Ravi, Sung Ju Shin, Saikat Sinha Ray, Young-Nam Kwon","doi":"10.1016/j.jiec.2025.07.048","DOIUrl":null,"url":null,"abstract":"This study presents a time-efficient, two-step modification strategy to significantly enhance polybenzimidazole (PBI) membrane resistance to acids and organic solvents, targeting low-pH aqueous and organic solvent nanofiltration (OSN) for industrial applications. A green solvent-based aqueous Fenton reaction pretreats the membrane, improving chemical and thermal stability via enhanced chain interactions. Subsequent Thiol-Ene click chemistry crosslinking introduces crucial flexibility, compensating for Fenton-induced brittleness. This synergistic PBI-FT membrane demonstrates remarkable stability in 70 % HNO3 (maintaining > 80 % MgSO4 rejection) and highly polar aprotic solvents (DMAc, DMF, NMP), retaining > 97 % weight. In OSN, PBI-FT achieved 2.1 LMH/bar ethanol permeance with > 97 % Rose Bengal rejection, showing superior separation even after 168 h DMF exposure. This sustainable technique yields robust nanofiltration membranes for efficient separation processes in challenging industrial environments.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"13 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2025.07.048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a time-efficient, two-step modification strategy to significantly enhance polybenzimidazole (PBI) membrane resistance to acids and organic solvents, targeting low-pH aqueous and organic solvent nanofiltration (OSN) for industrial applications. A green solvent-based aqueous Fenton reaction pretreats the membrane, improving chemical and thermal stability via enhanced chain interactions. Subsequent Thiol-Ene click chemistry crosslinking introduces crucial flexibility, compensating for Fenton-induced brittleness. This synergistic PBI-FT membrane demonstrates remarkable stability in 70 % HNO3 (maintaining > 80 % MgSO4 rejection) and highly polar aprotic solvents (DMAc, DMF, NMP), retaining > 97 % weight. In OSN, PBI-FT achieved 2.1 LMH/bar ethanol permeance with > 97 % Rose Bengal rejection, showing superior separation even after 168 h DMF exposure. This sustainable technique yields robust nanofiltration membranes for efficient separation processes in challenging industrial environments.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.