In Situ Exsolution to Form Cu Nanoparticles on Cu–Doped LaFeO3 Perovskite Oxides for Efficient Electrocatalytic Reduction of Nitrate to Ammonia

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mingqing Zuo, Yuxuan Kong, Han Zhou, Yaping Chen, Yanyan Sun, Shuang Li, Lei Han
{"title":"In Situ Exsolution to Form Cu Nanoparticles on Cu–Doped LaFeO3 Perovskite Oxides for Efficient Electrocatalytic Reduction of Nitrate to Ammonia","authors":"Mingqing Zuo, Yuxuan Kong, Han Zhou, Yaping Chen, Yanyan Sun, Shuang Li, Lei Han","doi":"10.1002/adfm.202513364","DOIUrl":null,"url":null,"abstract":"Perovskite oxides hold significant potentials for catalytic applications due to their unique electronic structure and favorable chemical properties, whereas their intrinsic catalytic activity toward the electrocatalytic nitrate reduction reaction (NITRR) for NH<jats:sub>3</jats:sub> production remains very limited yet needs to be further improved. Herein, a dual–engineering approach is proposed, combining Cu–mediated cation substitution and in situ exsolution for the construction of Cu nanoparticles on Cu–doped LaFeO<jats:sub>3</jats:sub> perovskites (LFC–E) to address these limitations. The optimal LF3C7–E exhibits the highest NITRR performance with an NH<jats:sub>3</jats:sub> yield rate of 4.1 mg h<jats:sup>−1</jats:sup> mg<jats:sub>cat</jats:sub><jats:sup>−1</jats:sup> and Faradaic efficiency of 76% at −0.7 V, which is superior to the corresponding LFC–P without exsolution treatment. The in situ Fourier transform infrared spectroscopy in combination with density functional theory calculations reveals that the synergistic effect between LaFeO<jats:sub>3</jats:sub> and Cu enables the efficiently decreased energy barrier for the hydrogenation step of *NO (*NO + H<jats:sup>+</jats:sup> + e<jats:sup>−</jats:sup> → *NOH + H<jats:sub>2</jats:sub>O), which is considered as the rate–determining step during the NITRR process. Moreover, an aqueous Zn–NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> battery and Zn–NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> battery with the optimal LF3C7–E as the cathode is assembled and achieves simultaneously electricity supply and NH<jats:sub>3</jats:sub> production.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"118 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202513364","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite oxides hold significant potentials for catalytic applications due to their unique electronic structure and favorable chemical properties, whereas their intrinsic catalytic activity toward the electrocatalytic nitrate reduction reaction (NITRR) for NH3 production remains very limited yet needs to be further improved. Herein, a dual–engineering approach is proposed, combining Cu–mediated cation substitution and in situ exsolution for the construction of Cu nanoparticles on Cu–doped LaFeO3 perovskites (LFC–E) to address these limitations. The optimal LF3C7–E exhibits the highest NITRR performance with an NH3 yield rate of 4.1 mg h−1 mgcat−1 and Faradaic efficiency of 76% at −0.7 V, which is superior to the corresponding LFC–P without exsolution treatment. The in situ Fourier transform infrared spectroscopy in combination with density functional theory calculations reveals that the synergistic effect between LaFeO3 and Cu enables the efficiently decreased energy barrier for the hydrogenation step of *NO (*NO + H+ + e → *NOH + H2O), which is considered as the rate–determining step during the NITRR process. Moreover, an aqueous Zn–NO3 battery and Zn–NO2 battery with the optimal LF3C7–E as the cathode is assembled and achieves simultaneously electricity supply and NH3 production.
在Cu掺杂的LaFeO3钙钛矿氧化物上原位析出形成Cu纳米颗粒,用于硝酸盐高效电催化还原成氨
钙钛矿氧化物由于其独特的电子结构和良好的化学性质在催化应用中具有重要的潜力,但其对NH3电催化硝酸还原反应(NITRR)的固有催化活性仍然非常有限,需要进一步提高。本文提出了一种双工程方法,结合Cu介导的阳离子取代和原位外溶,在Cu掺杂的LaFeO3钙钛矿(LFC-E)上构建Cu纳米颗粒,以解决这些局限性。优化后的LF3C7-E在- 0.7 V下NH3产率为4.1 mg h−1 mgcat−1,Faradaic效率为76%,表现出最高的NITRR性能,优于未溶出处理的LFC-P。原位傅里叶变换红外光谱结合密度泛函理论计算表明,LaFeO3和Cu之间的协同效应使得*NO加氢步骤(*NO + H+ + e−→*NOH + H2O)的能量势垒有效降低,该步骤被认为是NITRR过程中的速率决定步骤。并以最优LF3C7-E为正极组装了锌no3−水溶液电池和锌no2−电池,实现了供电和NH3的同步生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信