Ultra‐Wideband Hybrid Triboelectric–Piezoelectric Acoustic Sensors Enabled by Acoustic Metasurface Lens for Environment Perception and Medical Imaging

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huan Chang, Jizhong Zhao, Rui Qin, Wenjie Bao, Hongxiang Xie, Yingxue Tan, Ziya Guo, Huanhuan Zou, Xingfu Wang, Kai Dong
{"title":"Ultra‐Wideband Hybrid Triboelectric–Piezoelectric Acoustic Sensors Enabled by Acoustic Metasurface Lens for Environment Perception and Medical Imaging","authors":"Huan Chang, Jizhong Zhao, Rui Qin, Wenjie Bao, Hongxiang Xie, Yingxue Tan, Ziya Guo, Huanhuan Zou, Xingfu Wang, Kai Dong","doi":"10.1002/adfm.202513202","DOIUrl":null,"url":null,"abstract":"Acoustic sensing plays a vital role in underwater detection, communication, and biomedical diagnostics. However, conventional acoustic sensors suffer from various limitations: capacitive and piezoelectric sensors exhibit narrow bandwidth and low sensitivity and rely on external power, while optical sensors, despite their high sensitivity, require complex instrumentation and high costs. Here, an ultra‐wideband acoustic sensor (UWAS) is presented that operates via hybrid triboelectric‐piezoelectric coupling and integrates a trapezoidal‐grooves acoustic metasurface lens (PTGs‐AML). The periodic trapezoidal grooves significantly enhance acoustic radiation, increasing it by up to 255% at 10 MHz compared to conventional rectangular grooves. This enhancement improves acoustic focusing and suppresses sidelobe effects. The UWAS delivers a broad frequency response (20 Hz–50 MHz), high sensitivity (11.3 V Pa<jats:sup>−1</jats:sup> at 60 kHz), and a signal‐to‐noise ratio of 67 dB (at 150 kHz). Its response is frequency‐dependent: omnidirectional at 53 Hz, unidirectional at 50 kHz, and multidirectional at 13 MHz. The enhanced energy localization enabled by PTGs‐AML supports high‐fidelity audio recording, environmental noise monitoring, and biomedical imaging, including venous thrombosis detection and knee effusion diagnosis. This self‐powered and scalable sensor provides a low‐cost solution for diverse acoustic applications. Furthermore, the metasurface design offers a generalizable strategy to broaden the bandwidth of conventional capacitive and piezoelectric sensors, paving the way for next‐generation acoustic sensing technologies.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"658 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202513202","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic sensing plays a vital role in underwater detection, communication, and biomedical diagnostics. However, conventional acoustic sensors suffer from various limitations: capacitive and piezoelectric sensors exhibit narrow bandwidth and low sensitivity and rely on external power, while optical sensors, despite their high sensitivity, require complex instrumentation and high costs. Here, an ultra‐wideband acoustic sensor (UWAS) is presented that operates via hybrid triboelectric‐piezoelectric coupling and integrates a trapezoidal‐grooves acoustic metasurface lens (PTGs‐AML). The periodic trapezoidal grooves significantly enhance acoustic radiation, increasing it by up to 255% at 10 MHz compared to conventional rectangular grooves. This enhancement improves acoustic focusing and suppresses sidelobe effects. The UWAS delivers a broad frequency response (20 Hz–50 MHz), high sensitivity (11.3 V Pa−1 at 60 kHz), and a signal‐to‐noise ratio of 67 dB (at 150 kHz). Its response is frequency‐dependent: omnidirectional at 53 Hz, unidirectional at 50 kHz, and multidirectional at 13 MHz. The enhanced energy localization enabled by PTGs‐AML supports high‐fidelity audio recording, environmental noise monitoring, and biomedical imaging, including venous thrombosis detection and knee effusion diagnosis. This self‐powered and scalable sensor provides a low‐cost solution for diverse acoustic applications. Furthermore, the metasurface design offers a generalizable strategy to broaden the bandwidth of conventional capacitive and piezoelectric sensors, paving the way for next‐generation acoustic sensing technologies.
基于声学超表面透镜的超宽带混合摩擦电-压电声学传感器,用于环境感知和医学成像
声传感在水下探测、通信和生物医学诊断中起着至关重要的作用。然而,传统的声传感器存在各种局限性:电容式和压电式传感器带宽窄,灵敏度低,依赖外部电源,而光学传感器尽管灵敏度高,但需要复杂的仪器和高成本。本文提出了一种超宽带声学传感器(UWAS),该传感器通过混合摩擦电-压电耦合工作,并集成了一个梯形凹槽声学超表面透镜(PTGs - AML)。周期性梯形凹槽显著增强声辐射,与传统矩形凹槽相比,在10 MHz时声辐射增加了255%。这种增强提高了声聚焦和抑制副瓣效应。UWAS具有宽频率响应(20hz - 50mhz)、高灵敏度(60khz时为11.3 V Pa−1)和67 dB (150khz时)的信噪比。它的响应与频率相关:53 Hz时全向,50 kHz时单向,13 MHz时多向。PTGs - AML增强的能量定位支持高保真音频记录、环境噪声监测和生物医学成像,包括静脉血栓检测和膝关节积液诊断。这种自供电和可扩展的传感器为各种声学应用提供了低成本的解决方案。此外,超表面设计提供了一种通用策略来拓宽传统电容式和压电式传感器的带宽,为下一代声学传感技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信