Self‐Healing Ionogel with Unprecedented High Gel‐Sol Transition Temperature Enables Self‐Healing Zinc‐Air Battery Operation at 100 °C

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongli Li, Fuchang Xu, Xinru Lin, Yang Li
{"title":"Self‐Healing Ionogel with Unprecedented High Gel‐Sol Transition Temperature Enables Self‐Healing Zinc‐Air Battery Operation at 100 °C","authors":"Hongli Li, Fuchang Xu, Xinru Lin, Yang Li","doi":"10.1002/adfm.202513459","DOIUrl":null,"url":null,"abstract":"Existing zinc‐air batteries (ZABs) suffer from limited cycle lives and instability at temperatures exceeding 60 °C, severely hindering their high‐temperature application. Herein, a self‐healing ionogel with an exceptionally high gel‐sol transition temperature (<jats:italic>T</jats:italic><jats:sub>gel‐sol</jats:sub>) is prepared, enabling stable ZAB operation at 100 °C. This ionogel, termed UGTS, is synthesized by copolymerizing 2‐(2‐benzoylhydrazine‐1‐carboxamido)ethyl acrylate with poly(ethylene glycol) monomethyl ether acrylate and incorporating Zn(BF<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>/1‐ethyl‐3‐methylimidazolium tetrafluoroborate electrolyte. The UGTS ionogel exhibits non‐volatility, a <jats:italic>T</jats:italic><jats:sub>gel‐sol</jats:sub> of 187 °C, high decomposition voltages at elevated temperatures, and the ability to suppress zinc dendrite growth and by‐product formation under high‐temperature conditions. Moreover, this ionogel exhibits a rapid, efficient, and repeatable room‐temperature self‐healing capability. These attributes are ascribed to its multiple‐hydrogen‐bond‐induced phase‐separated structure, which provides excellent high‐temperature thermal stability and dynamics. At 100 °C, the UGTS ionogel‐based ZAB achieves a 76 h cycle life and can reliably power a digital watch for over 6 days, a performance unattainable by previous ZABs. Moreover, after being severed, the electrochemical performance of this battery is fully restored within 3 s at room temperature. This work provides a novel strategy for developing high‐performance self‐healing ZABs for extreme temperature applications, addressing the critical challenges of thermal stability and self‐healing in next‐generation energy storage devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"14 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202513459","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Existing zinc‐air batteries (ZABs) suffer from limited cycle lives and instability at temperatures exceeding 60 °C, severely hindering their high‐temperature application. Herein, a self‐healing ionogel with an exceptionally high gel‐sol transition temperature (Tgel‐sol) is prepared, enabling stable ZAB operation at 100 °C. This ionogel, termed UGTS, is synthesized by copolymerizing 2‐(2‐benzoylhydrazine‐1‐carboxamido)ethyl acrylate with poly(ethylene glycol) monomethyl ether acrylate and incorporating Zn(BF4)2/1‐ethyl‐3‐methylimidazolium tetrafluoroborate electrolyte. The UGTS ionogel exhibits non‐volatility, a Tgel‐sol of 187 °C, high decomposition voltages at elevated temperatures, and the ability to suppress zinc dendrite growth and by‐product formation under high‐temperature conditions. Moreover, this ionogel exhibits a rapid, efficient, and repeatable room‐temperature self‐healing capability. These attributes are ascribed to its multiple‐hydrogen‐bond‐induced phase‐separated structure, which provides excellent high‐temperature thermal stability and dynamics. At 100 °C, the UGTS ionogel‐based ZAB achieves a 76 h cycle life and can reliably power a digital watch for over 6 days, a performance unattainable by previous ZABs. Moreover, after being severed, the electrochemical performance of this battery is fully restored within 3 s at room temperature. This work provides a novel strategy for developing high‐performance self‐healing ZABs for extreme temperature applications, addressing the critical challenges of thermal stability and self‐healing in next‐generation energy storage devices.
具有前所未有的高凝胶-溶胶转变温度的自修复离子凝胶使锌-空气电池在100°C下运行
现有的锌空气电池(ZABs)在超过60°C的温度下循环寿命有限且不稳定,严重阻碍了其高温应用。本文制备了具有极高凝胶-溶胶转变温度(Tgel - sol)的自修复离子凝胶,使ZAB在100°C下稳定运行。该离子凝胶被称为UGTS,是由2‐(2‐苯甲酰肼‐1‐羧胺)丙烯酸乙酯与聚乙二醇单甲基醚丙烯酸酯共聚并加入Zn(BF4)2/1‐乙基‐3‐甲基咪唑四氟硼酸盐电解质合成的。UGTS离子凝胶具有不挥发性、187℃的凝胶溶胶、高温下的高分解电压、以及在高温条件下抑制锌枝晶生长和副产物形成的能力。此外,这种离子凝胶具有快速、高效和可重复的室温自愈能力。这些特性归因于其多氢键诱导的相分离结构,提供了优异的高温热稳定性和动力学。在100°C下,基于UGTS离子凝胶的ZAB实现了76小时的循环寿命,并且可以可靠地为数字手表供电超过6天,这是以前的ZAB无法实现的性能。并且,切断后,在室温下,电池的电化学性能在3 s内完全恢复。这项工作为开发用于极端温度应用的高性能自修复ZABs提供了一种新策略,解决了下一代储能设备中热稳定性和自修复的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信