Cu‐MOF Functionalized Hydroxyapatite/Bacterial Cellulose Composite Separator Enabling Dendrite‐Free Fast Charging and Enhanced Thermal Safety for High‐Loading Graphite Anode

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Long Cheng, Yaxin Zhang, Dandan Li, Rui Li, Hao Ouyang, Honggang He, Shi Chen, Shiyou Zheng, Heng Li
{"title":"Cu‐MOF Functionalized Hydroxyapatite/Bacterial Cellulose Composite Separator Enabling Dendrite‐Free Fast Charging and Enhanced Thermal Safety for High‐Loading Graphite Anode","authors":"Long Cheng, Yaxin Zhang, Dandan Li, Rui Li, Hao Ouyang, Honggang He, Shi Chen, Shiyou Zheng, Heng Li","doi":"10.1002/adfm.202515523","DOIUrl":null,"url":null,"abstract":"Fast charging of high‐loading graphite anodes in lithium‐ion batteries (LIBs) is hampered by sluggish Li<jats:sup>+</jats:sup> ion transport kinetics, leading to detrimental Li dendrite formation and safety hazards. Herein, a copper‐based metal‐organic framework (Cu‐MOF) functionalized hydroxyapatite/bacterial cellulose (Cu‐MOF@HB) composite nanofibers separator is designed to address these critical challenges. The hierarchical porous structure of the Cu‐MOF@HB separator enhances electrolyte wettability and adsorption. Density functional theory (DFT) calculation reveals that abundant open metal sites within the Cu‐MOF promote PF<jats:sub>6</jats:sub><jats:sup>−</jats:sup> anion immobilization via <jats:italic>Lewis</jats:italic> acid‐base interactions, effectively increasing the Li<jats:sup>+</jats:sup> ion transference number and facilitating faster Li<jats:sup>+</jats:sup> ion migration within the separator. Consequently, the Cu‐MOF@HB separator effectively mitigates concentration polarization at the graphite anode/separator interfaces, suppressing Li dendrite formation and improving Coulombic efficiency. This significantly improves fast‐charging performance in high‐loading LiFePO<jats:sub>4</jats:sub> (15.5 mg cm<jats:sup>−2</jats:sup>)||graphite (7.5 mg cm<jats:sup>−2</jats:sup>) batteries, achieving 79% capacity retention after 600 cycles at 3 C, compared to only 16% with a conventional polypropylene (PP) separator. Critically, the Cu‐MOF@HB separator also exhibits exceptional thermal stability and flame retardancy, enhancing battery safety. This work highlights the significant potential of interfacial engineering of separators, particularly through the incorporation of functional MOFs and thermally stable inorganic nanofibers, for achieving safe and high‐performance fast‐charging LIBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"29 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202515523","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fast charging of high‐loading graphite anodes in lithium‐ion batteries (LIBs) is hampered by sluggish Li+ ion transport kinetics, leading to detrimental Li dendrite formation and safety hazards. Herein, a copper‐based metal‐organic framework (Cu‐MOF) functionalized hydroxyapatite/bacterial cellulose (Cu‐MOF@HB) composite nanofibers separator is designed to address these critical challenges. The hierarchical porous structure of the Cu‐MOF@HB separator enhances electrolyte wettability and adsorption. Density functional theory (DFT) calculation reveals that abundant open metal sites within the Cu‐MOF promote PF6 anion immobilization via Lewis acid‐base interactions, effectively increasing the Li+ ion transference number and facilitating faster Li+ ion migration within the separator. Consequently, the Cu‐MOF@HB separator effectively mitigates concentration polarization at the graphite anode/separator interfaces, suppressing Li dendrite formation and improving Coulombic efficiency. This significantly improves fast‐charging performance in high‐loading LiFePO4 (15.5 mg cm−2)||graphite (7.5 mg cm−2) batteries, achieving 79% capacity retention after 600 cycles at 3 C, compared to only 16% with a conventional polypropylene (PP) separator. Critically, the Cu‐MOF@HB separator also exhibits exceptional thermal stability and flame retardancy, enhancing battery safety. This work highlights the significant potential of interfacial engineering of separators, particularly through the incorporation of functional MOFs and thermally stable inorganic nanofibers, for achieving safe and high‐performance fast‐charging LIBs.
Cu - MOF功能化羟基磷灰石/细菌纤维素复合分离器,实现无枝晶快速充电和提高高负载石墨阳极的热安全性
锂离子电池(LIBs)中高负载石墨阳极的快速充电受到缓慢的锂离子传输动力学的阻碍,导致有害的锂枝晶形成和安全隐患。本文设计了一种铜基金属有机框架(Cu‐MOF)功能化羟基磷灰石/细菌纤维素(Cu‐MOF@HB)复合纳米纤维分离器来解决这些关键问题。Cu‐MOF@HB隔膜的分层多孔结构增强了电解质的润湿性和吸附性。密度泛函理论(DFT)计算表明,Cu - MOF内丰富的开放金属位点通过Lewis酸碱相互作用促进了PF6 -阴离子的固定,有效地增加了Li+离子的转移数量,促进了Li+离子在分离器内的更快迁移。因此,Cu‐MOF@HB分离器有效地减轻了石墨阳极/分离器界面的浓度极化,抑制了Li枝晶的形成,提高了库仑效率。这显著提高了高负载LiFePO4 (15.5 mg cm−2)||石墨(7.5 mg cm−2)电池的快速充电性能,在3600次循环后,在3℃下达到79%的容量保持率,而传统的聚丙烯(PP)分离器只有16%的容量保持率。重要的是,Cu‐MOF@HB分离器还表现出优异的热稳定性和阻燃性,提高了电池的安全性。这项工作强调了隔膜界面工程的巨大潜力,特别是通过结合功能性mof和热稳定的无机纳米纤维,实现安全和高性能快速充电的锂离子电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信